Spatio-Temporal Metric-Semantic Mapping for Persistent Orchard Monitoring: Method and Dataset

Monitoring orchards at the individual tree or fruit level throughout the growth season is crucial for plant phenotyping and horticultural resource optimization, such as chemical use and yield estimation. We present a 4D spatio-temporal metric-semantic mapping system that integrates multi-session mea...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE robotics and automation letters Ročník 10; číslo 8; s. 8610 - 8617
Hlavní autori: Lei, Jiuzhou, Prabhu, Ankit, Liu, Xu, Cladera, Fernando, Mortazavi, Mehrad, Ehsani, Reza, Chaudhari, Pratik, Kumar, Vijay
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.08.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2377-3766, 2377-3766
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Monitoring orchards at the individual tree or fruit level throughout the growth season is crucial for plant phenotyping and horticultural resource optimization, such as chemical use and yield estimation. We present a 4D spatio-temporal metric-semantic mapping system that integrates multi-session measurements to track fruit growth over time. Our approach combines a LiDAR-RGB fusion module for 3D fruit localization with a 4D fruit association method leveraging positional, visual, and topology information for improved data association precision. Evaluated on real orchard data, our method achieves a 96.9% fruit counting accuracy for 1,790 apples across 60 trees, a mean fruit size estimation error of 1.1 cm, and a 23.7% improvement in 4D data association precision over baselines.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2025.3588037