An Integrated Framework for ARX Model Identification and Its Application to Lithium-Ion Battery
This article addresses the critical problem of real-time parameter estimation in dynamic systems using the autoregressive with exogenous input (ARX) model framework, with a particular focus on applications in lithium-ion batteries. The accurate and efficient parameter estimation is essential for opt...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on instrumentation and measurement Jg. 74; S. 1 - 14 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9456, 1557-9662 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This article addresses the critical problem of real-time parameter estimation in dynamic systems using the autoregressive with exogenous input (ARX) model framework, with a particular focus on applications in lithium-ion batteries. The accurate and efficient parameter estimation is essential for optimizing system performance in various contexts. However, traditional gradient-based methods often encounter limitations, such as poor adaptability and reduced reliability under dynamic conditions. To address these challenges, this study proposes a hybrid gradient-based approach that integrates fractional-order gradients and a convex combination mechanism. This approach enables a more broader exploration of the optimization objective. A kernel function is introduced to dynamically adjust the weights of multi-innovation variables, reducing the impact of random errors in parameter estimation. Furthermore, the proposed ARX-based identification framework is tailored to the second-order RC equivalent circuit model (ECM) for lithium-ion batteries. Experimental results suggest that the proposed identification framework possesses the potential to achieve a more satisfactory performance than traditional methods. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9456 1557-9662 |
| DOI: | 10.1109/TIM.2025.3545698 |