Translating to a Low-Resource Language with Compiler Feedback: A Case Study on Cangjie
In the rapidly advancing field of software development, the demand for practical code translation tools has surged, driven by the need for interoperability across different programming environments. Existing learning-based approaches often need help with low-resource programming languages that lack...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on software engineering Jg. 51; H. 9; S. 2671 - 2692 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.09.2025
IEEE Computer Society |
| Schlagworte: | |
| ISSN: | 0098-5589, 1939-3520 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In the rapidly advancing field of software development, the demand for practical code translation tools has surged, driven by the need for interoperability across different programming environments. Existing learning-based approaches often need help with low-resource programming languages that lack sufficient parallel code corpora for training. To address these limitations, we propose a novel training framework that begins with monolingual seed corpora, generating parallel datasets via back-translation and incorporating compiler feedback to optimize the translation model. As a case study, we apply our method to train a code translation model for a new-born low-resource programming language, Cangjie. We also construct a parallel test dataset for <inline-formula><tex-math notation="LaTeX">\mathsf{Java}</tex-math> <mml:math><mml:mrow><mml:mi mathvariant="sans-serif">Java</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="chen-ieq1-3594908.gif"/> </inline-formula>-to-<inline-formula><tex-math notation="LaTeX">\mathsf{Cangjie}</tex-math> <mml:math><mml:mrow><mml:mi mathvariant="sans-serif">Cangjie</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="chen-ieq2-3594908.gif"/> </inline-formula> translation and test cases to evaluate the effectiveness of our approach. Experimental results demonstrate that compiler feedback greatly enhances syntactical correctness, semantic accuracy, and test pass rates of the translated <inline-formula><tex-math notation="LaTeX">\mathsf{Cangjie}</tex-math> <mml:math><mml:mrow><mml:mi mathvariant="sans-serif">Cangjie</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="chen-ieq3-3594908.gif"/> </inline-formula> code. These findings highlight the potential of our method to support code translation in low-resource settings, expanding the capabilities of learning-based models for programming languages with limited data availability. |
|---|---|
| AbstractList | In the rapidly advancing field of software development, the demand for practical code translation tools has surged, driven by the need for interoperability across different programming environments. Existing learning-based approaches often need help with low-resource programming languages that lack sufficient parallel code corpora for training. To address these limitations, we propose a novel training framework that begins with monolingual seed corpora, generating parallel datasets via back-translation and incorporating compiler feedback to optimize the translation model. As a case study, we apply our method to train a code translation model for a new-born low-resource programming language, Cangjie. We also construct a parallel test dataset for <inline-formula><tex-math notation="LaTeX">\mathsf{Java}</tex-math> <mml:math><mml:mrow><mml:mi mathvariant="sans-serif">Java</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="chen-ieq1-3594908.gif"/> </inline-formula>-to-<inline-formula><tex-math notation="LaTeX">\mathsf{Cangjie}</tex-math> <mml:math><mml:mrow><mml:mi mathvariant="sans-serif">Cangjie</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="chen-ieq2-3594908.gif"/> </inline-formula> translation and test cases to evaluate the effectiveness of our approach. Experimental results demonstrate that compiler feedback greatly enhances syntactical correctness, semantic accuracy, and test pass rates of the translated <inline-formula><tex-math notation="LaTeX">\mathsf{Cangjie}</tex-math> <mml:math><mml:mrow><mml:mi mathvariant="sans-serif">Cangjie</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="chen-ieq3-3594908.gif"/> </inline-formula> code. These findings highlight the potential of our method to support code translation in low-resource settings, expanding the capabilities of learning-based models for programming languages with limited data availability. In the rapidly advancing field of software development, the demand for practical code translation tools has surged, driven by the need for interoperability across different programming environments. Existing learning-based approaches often need help with low-resource programming languages that lack sufficient parallel code corpora for training. To address these limitations, we propose a novel training framework that begins with monolingual seed corpora, generating parallel datasets via back-translation and incorporating compiler feedback to optimize the translation model. As a case study, we apply our method to train a code translation model for a new-born low-resource programming language, Cangjie. We also construct a parallel test dataset for [Formula Omitted]-to-[Formula Omitted] translation and test cases to evaluate the effectiveness of our approach. Experimental results demonstrate that compiler feedback greatly enhances syntactical correctness, semantic accuracy, and test pass rates of the translated [Formula Omitted] code. These findings highlight the potential of our method to support code translation in low-resource settings, expanding the capabilities of learning-based models for programming languages with limited data availability. |
| Author | Ou, Yijie Zhou, Yuming Li, Yanhui Chen, Lin Su, Chenghao Wang, Jun Tan, Jialiang |
| Author_xml | – sequence: 1 givenname: Jun orcidid: 0009-0001-5491-0443 surname: Wang fullname: Wang, Jun email: 602022330025@smail.nju.edu.cn organization: State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China – sequence: 2 givenname: Chenghao orcidid: 0000-0003-3273-1222 surname: Su fullname: Su, Chenghao email: dz21330021@smail.nju.edu.cn organization: State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China – sequence: 3 givenname: Yijie orcidid: 0009-0005-3355-993X surname: Ou fullname: Ou, Yijie email: chenghao_su@smail.nju.edu.cn organization: State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China – sequence: 4 givenname: Yanhui orcidid: 0000-0003-2282-7175 surname: Li fullname: Li, Yanhui email: lchen@nju.edu.cn organization: State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China – sequence: 5 givenname: Jialiang surname: Tan fullname: Tan, Jialiang email: tanjialiang1@huawei.com organization: Huawei, Hangzhou, China – sequence: 6 givenname: Lin orcidid: 0000-0003-2352-2226 surname: Chen fullname: Chen, Lin email: yanhuili@nju.edu.cn organization: State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China – sequence: 7 givenname: Yuming orcidid: 0000-0002-4645-2526 surname: Zhou fullname: Zhou, Yuming email: zhouyuming@nju.edu.cn organization: State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China |
| BookMark | eNpFkMFLwzAUh4NMcJvePXgIeO58SZq28TbKpkJBcNNrSdvX2rmlM2kZ--_N2MDT48H3-73HNyEj0xkk5J7BjDFQT-vVYsaBy5mQKlSQXJExU0IFQnIYkTGASgIpE3VDJs5tAEDGsRyTr7XVxm1135qG9h3VNOsOwQe6brAl0kybZtAN0kPbf9O02-3bLVq6RKwKXf480zlNtUO66ofqSDvjN9NsWrwl17XeOry7zCn5XC7W6WuQvb-8pfMsKHkY90EUxTWPi4RBjIpXCrBMRFnVIVZJXSlVgK7LiJc64SC5LDykFVQq5lHNKq7FlDyee_e2-x3Q9fnGP278yVxwyQVjIhSegjNV2s45i3W-t-1O22POID_Zy729_GQvv9jzkYdzpEXEf9zDUcK4-ANQmGwi |
| CODEN | IESEDJ |
| Cites_doi | 10.1109/ase.2015.74 10.18653/v1/2023.findings-emnlp.119 10.1145/1806799.1806848 10.18653/v1/2021.emnlp-main.685 10.1145/1806799.1806831 10.1109/ICSE48619.2023.00072 10.1145/3649506 10.18653/v1/p16-1009 10.1108/ws.2000.07949fab.004 10.18653/v1/2023.nlrse-1.10 10.1145/2591062.2591072 10.1007/978-3-031-44693-1_54 10.1075/target.8.1.04mar 10.18653/v1/D18-1399 10.1145/2491411.2494584 10.18653/v1/2024.acl-long.251 10.1145/3597503.3639226 10.18653/v1/2022.findings-acl.2 10.1145/2661136.2661148 10.18653/v1/2023.findings-emnlp.373 10.1109/eStream.2019.8732170 10.18653/v1/2023.findings-emnlp.337 |
| ContentType | Journal Article |
| Copyright | Copyright IEEE Computer Society 2025 |
| Copyright_xml | – notice: Copyright IEEE Computer Society 2025 |
| DBID | 97E RIA RIE AAYXX CITATION JQ2 K9. |
| DOI | 10.1109/TSE.2025.3594908 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) |
| DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1939-3520 |
| EndPage | 2692 |
| ExternalDocumentID | 10_1109_TSE_2025_3594908 11106812 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Huawei-Nanjing University Software New Technology Joint Laboratory – fundername: Natural Science Foundation of China grantid: 62272221; 62172205; 62172202 funderid: 10.13039/501100001809 |
| GroupedDBID | --Z -DZ -~X .4S .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 7WY 7X7 85S 88E 88I 8FE 8FG 8FI 8FJ 8FL 8G5 8R4 8R5 97E 9M8 AAJGR AASAJ AAWTH ABAZT ABFSI ABJCF ABPPZ ABQJQ ABUWG ABVLG ACGFO ACGOD ACIWK ACNCT ADBBV AENEX AETIX AFKRA AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS ASUFR ATWAV AZQEC BEFXN BENPR BEZIV BFFAM BGLVJ BGNUA BKEBE BKOMP BPEOZ BPHCQ BVXVI CCPQU CS3 DU5 DWQXO E.L EBS EDO EJD FRNLG FYUFA GNUQQ GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HMCUK HZ~ H~9 I-F IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI ITG ITH JAVBF K60 K6V K6~ K7- L6V LAI M0C M1P M1Q M2O M2P M43 M7S MS~ O9- OCL OHT P2P P62 PHGZM PHGZT PJZUB PPXIY PQBIZ PQBZA PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO Q2X RIA RIE RNI RNS RXW RZB S10 TAE TN5 TWZ UHB UKHRP UPT UQL VH1 WH7 XOL YYP YZZ ZCG AAYXX AFFHD CITATION JQ2 K9. |
| ID | FETCH-LOGICAL-c247t-667f27b8107e92d90ec83cdf4ed8fd99b0afc62ca820525be92a90d9726f1d2a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001575768400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0098-5589 |
| IngestDate | Thu Nov 20 16:00:48 EST 2025 Sat Nov 29 07:31:19 EST 2025 Wed Oct 01 07:05:09 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c247t-667f27b8107e92d90ec83cdf4ed8fd99b0afc62ca820525be92a90d9726f1d2a3 |
| Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 |
| ORCID | 0009-0001-5491-0443 0000-0002-4645-2526 0009-0005-3355-993X 0000-0003-2282-7175 0000-0003-2352-2226 0000-0003-3273-1222 |
| PQID | 3252311343 |
| PQPubID | 21418 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_3252311343 crossref_primary_10_1109_TSE_2025_3594908 ieee_primary_11106812 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on software engineering |
| PublicationTitleAbbrev | TSE |
| PublicationYear | 2025 |
| Publisher | IEEE IEEE Computer Society |
| Publisher_xml | – name: IEEE – name: IEEE Computer Society |
| References | Szafraniec (ref13) 2022 ref56 ref14 Achiam (ref22) 2023 (ref23) 2024 ref58 ref53 ref52 ref55 ref10 ref54 Hu (ref40) 2022 ref17 Liu (ref47) 2022 ref19 ref18 Kulal (ref35) 2019 Ren (ref37) 2020 Rozière (ref36) 2020 Gao (ref46) 2023 Nijkamp (ref16) 2022 ref50 ref45 ref48 ref44 (ref7) 2024 Touvron (ref20) 2023 ref49 ref9 Lample (ref27) 2017 Yang (ref39) 2024 Rafailov (ref33) 2023 (ref4) 2024 Roziere (ref12) 2020; 33 Dong (ref43) 2022 Lachaux (ref57) 2021; 34 Grubisic (ref59) 2024 Sanchez (ref6) 2024 Roziere (ref25) 2023 (ref38) 2024 Christopoulou (ref41) 2022 ref2 Chiang (ref30) 2025 ref1 Kaplan (ref51) 2020 (ref8) 2024 Ethayarajh (ref32) 2024 Smirnov (ref5) 2024 Chen (ref21) 2021 ref26 Rozière (ref24) 2022 Chen (ref60) 2023 (ref29) Apr. 21, 2025 (ref3) 2024 (ref34) 2024 ref28 Scao (ref15) 2022 Shen (ref42) 2023 (ref31) 2024 Chen (ref11) 2018; 31 ref61 |
| References_xml | – year: 2023 ident: ref22 article-title: Gpt-4 technical report – volume: 34 start-page: 14967 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2021 ident: ref57 article-title: DOBF: A deobfuscation pre-training objective for programming languages – year: 2024 ident: ref23 article-title: Huawei Cangjie – ident: ref9 doi: 10.1109/ase.2015.74 – ident: ref54 doi: 10.18653/v1/2023.findings-emnlp.119 – start-page: 1 volume-title: Proc. 10th Int. Conf. Learn. Representations (ICLR) year: 2022 ident: ref40 article-title: LoRA: Low-rank adaptation of large language models – year: 2024 ident: ref4 article-title: C2rust transpiler – year: 2022 ident: ref41 article-title: PanGu-Coder: Program synthesis with function-level language modeling – year: 2023 ident: ref42 article-title: PanGu-Coder2: Boosting large language models for code with ranking feedback – year: 2022 ident: ref43 article-title: A survey on in-context learning – start-page: 1950 volume-title: Proc. Adv. Neural Inf. Process. Syst., Annu. Conf. Neural Inf. Process. Syst. (NeurIPS) year: 2022 ident: ref47 article-title: Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning – ident: ref1 doi: 10.1145/1806799.1806848 – year: 2021 ident: ref21 article-title: Evaluating large language models trained on code – year: 2024 ident: ref8 article-title: Emscripten transpiler – year: Apr. 21, 2025 ident: ref29 article-title: Text generation and prompting: Message roles and instruction following – year: 2024 ident: ref31 article-title: Huawei Cangjie documents – year: 2020 ident: ref51 article-title: Scaling laws for neural language models – ident: ref17 doi: 10.18653/v1/2021.emnlp-main.685 – year: 2023 ident: ref46 article-title: Human-like summarization evaluation with ChatGPT – ident: ref2 doi: 10.1145/1806799.1806831 – ident: ref14 doi: 10.1109/ICSE48619.2023.00072 – year: 2023 ident: ref60 article-title: Teaching large language models to self-debug – ident: ref44 doi: 10.1145/3649506 – ident: ref26 doi: 10.18653/v1/p16-1009 – year: 2024 ident: ref5 article-title: Cxgo transpiler – year: 2022 ident: ref15 article-title: BLOOM: A 176b-parameter open-access multilingual language model – year: 2025 ident: ref30 article-title: Vicuna: An open-source chatbot impressing GPT-4 with 90%* ChatGPT quality – ident: ref18 doi: 10.1108/ws.2000.07949fab.004 – ident: ref49 doi: 10.18653/v1/2023.nlrse-1.10 – start-page: 53728 volume-title: Proc. Adv. Neural Inf. Process. Syst., Annu. Conf. Neural Inf. Process. Syst. (NeurIPS) year: 2023 ident: ref33 article-title: Direct preference optimization: Your language model is secretly a reward model – ident: ref52 doi: 10.1145/2591062.2591072 – start-page: 20601 volume-title: Proc. Adv. Neural Inf. Process. Syst., Annu. Conf. Neural Inf. Process. Syst. (NeurIPS) year: 2020 ident: ref36 article-title: Unsupervised translation of programming languages – ident: ref50 doi: 10.1007/978-3-031-44693-1_54 – year: 2022 ident: ref16 article-title: CodeGen: An open large language model for code with multi-turn program synthesis – ident: ref28 doi: 10.1075/target.8.1.04mar – year: 2017 ident: ref27 article-title: Unsupervised machine translation using monolingual corpora only – year: 2024 ident: ref3 article-title: Facebook hack lang – year: 2024 ident: ref59 article-title: Compiler generated feedback for large language models – volume: 33 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2020 ident: ref12 article-title: Unsupervised translation of programming languages – year: 2024 ident: ref39 article-title: Qwen2 technical report – ident: ref56 doi: 10.18653/v1/D18-1399 – year: 2024 ident: ref34 article-title: greengerong/leetcode at huggingface – ident: ref10 doi: 10.1145/2491411.2494584 – ident: ref61 doi: 10.18653/v1/2024.acl-long.251 – year: 2024 ident: ref6 article-title: Sharpen transpiler – start-page: 1 volume-title: Proc. 10th Int. Conf. Learn. Representations (ICLR) year: 2022 ident: ref24 article-title: Leveraging automated unit tests for unsupervised code translation – year: 2024 ident: ref32 article-title: KTO: model alignment as prospect theoretic optimization – ident: ref55 doi: 10.1145/3597503.3639226 – ident: ref58 doi: 10.18653/v1/2022.findings-acl.2 – year: 2023 ident: ref20 article-title: Llama 2: Open foundation and fine-tuned chat models – year: 2023 ident: ref25 article-title: Code Llama: Open foundation models for code – year: 2024 ident: ref7 article-title: Java2csharp transpiler – year: 2022 ident: ref13 article-title: Code translation with compiler representations – start-page: 11883 volume-title: Proc. Adv. Neural Inf. Process. Syst., Annu. Conf. Neural Inf. Process. Syst. (NeurIPS) year: 2019 ident: ref35 article-title: SPoC: Search-based pseudocode to code – ident: ref53 doi: 10.1145/2661136.2661148 – year: 2024 ident: ref38 article-title: Huawei Cangjie specification – ident: ref45 doi: 10.18653/v1/2023.findings-emnlp.373 – volume: 31 start-page: 2552 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2018 ident: ref11 article-title: Tree-to-tree neural networks for program translation – ident: ref19 doi: 10.1109/eStream.2019.8732170 – ident: ref48 doi: 10.18653/v1/2023.findings-emnlp.337 – year: 2020 ident: ref37 article-title: CodeBLEU: A method for automatic evaluation of code synthesis |
| SSID | ssj0005775 ssib053395008 |
| Score | 2.4736 |
| Snippet | In the rapidly advancing field of software development, the demand for practical code translation tools has surged, driven by the need for interoperability... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 2671 |
| SubjectTerms | Cangjie Case studies Codes compiler feedback Compilers Computer languages Data models Datasets Feedback Java Large language models Learning Programming environments Programming languages Reactive power Software Software development Syntactics Training Translating Translation Transpiler |
| Title | Translating to a Low-Resource Language with Compiler Feedback: A Case Study on Cangjie |
| URI | https://ieeexplore.ieee.org/document/11106812 https://www.proquest.com/docview/3252311343 |
| Volume | 51 |
| WOSCitedRecordID | wos001575768400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-3520 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005775 issn: 0098-5589 databaseCode: RIE dateStart: 19750101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9uePDi_Jg4nZKDFw_Z0rTNh7cxHB7GEJyyW0mTdEyhla1T_O9N0pYh4sFbC0kp7-Xl974fADcZTonGaYpiSRiy-m2KhIUGJAnH2uJdxqTvMztlsxlfLMRjXazua2GMMT75zAzco4_l60JtnatsaOUSu35ZLdBijFbFWrt8DsbipkFmHHPRxCSxGM6f7q0lSOJBGAsX6PqBQX6oyq-b2MPLpPPPHzsCh7UeCUcV44_BnslPQKeZ0QBrkT0FLx6MXMJbvoRlASWcFp-ocdrDae2uhM4fC912e0us4cRiWirV2x0cwbHFOejSDb9gkdu3fPm6Ml3wPLmfjx9QPUsBKRKxElHKMsJSbq09I4gW2CgeKp1FRvNMC5FimSlKlLQaQUzi1C6SAmvBCM0CTWR4Btp5kZtzALXVAIVUikuqIxdciWhEuaYBN8wqg1kP3DbUTd6rlhmJNzWwSCwnEseJpOZED3QdNXfrakL2QL_hR1IL1SYJibWagyCMwos_tl2CA_f1KgesD9rlemuuwL76KFeb9bU_L9_d3bw0 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_4BXpxfuJ0ag5ePFTT9COJtyEOxToEp-xW0iQdKrQyN8X_3iRLGSIevLWQ0PJeXn7v-wGclLggChdFkAhCA6PfFgE30BAIwrAyeFdS4frMZrTfZ8Mhv_fF6q4WRmvtks_0mX10sXxVy6l1lZ0bucS2X9YiLNvRWb5ca57RQWnStMhMEsabqCTm54OHK2MLkuQsSrgNdf1AITdW5ddd7ACm1_rnr23AutckUXfG-k1Y0NUWtJopDcgL7TY8OTiyKW_VCE1qJFBWfwaN2x5l3mGJrEcW2e3mnhijnkG1QsjXC9RFlwbpkE04_EJ1Zd6q0cuz3oHH3tXg8jrw0xQCSWI6CdKUloQWzNh7mhPFsZYskqqMtWKl4rzAopQpkcLoBAlJCrNIcKw4JWkZKiKiXViq6krvAVJGB-RCSiZSFdvwSpzGKVNpyDQ16mDZhtOGuvnbrGlG7owNzHPDidxyIvecaMOOpeZ8nSdkGzoNP3IvVu95RIzdHIZRHO3_se0YVq8Hd1me3fRvD2DNfmmWEdaBpcl4qg9hRX5Mnt_HR-7sfAPaor99 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Translating+to+a+Low-Resource+Language+with+Compiler+Feedback%3A+A+Case+Study+on+Cangjie&rft.jtitle=IEEE+transactions+on+software+engineering&rft.au=Wang%2C+Jun&rft.au=Su%2C+Chenghao&rft.au=Ou%2C+Yijie&rft.au=Li%2C+Yanhui&rft.date=2025-09-01&rft.pub=IEEE+Computer+Society&rft.issn=0098-5589&rft.eissn=1939-3520&rft.volume=51&rft.issue=11&rft.spage=2671&rft.epage=2692&rft_id=info:doi/10.1109%2FTSE.2025.3594908&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-5589&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-5589&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-5589&client=summon |