H.265/HEVC Decoding via Iterative Recovery From Incomplete Quantized Measurements

This letter is dedicated to improving the quality of video sequences compressed by the H.265/HEVC standard. We propose to consider this problem as a signal recovery from incomplete measurements taken in the HEVC transform domain. The recovery could be obtained via <inline-formula><tex-math...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters Jg. 32; S. 4149 - 4153
Hauptverfasser: Mahfod, Karam, Belyaev, Evgeny
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1070-9908, 1558-2361
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This letter is dedicated to improving the quality of video sequences compressed by the H.265/HEVC standard. We propose to consider this problem as a signal recovery from incomplete measurements taken in the HEVC transform domain. The recovery could be obtained via <inline-formula><tex-math notation="LaTeX">l_{1}</tex-math></inline-formula>-minimization using the Iterative Shrinkage-Thresholding Algorithm (ISTA) well known in compressive sensing (CS) framework. However, in case of HEVC the ISTA updating step cannot be performed directly via matrix multiplications, since the sensing is performed using high-complex hybrid intra- and motion-compensated prediction in pixel domain, and the frame sensing matrix depends on the current and corresponding reference frames along with the encoder compression profile. In order to overcome these limitations, in this letter, we first propose to modify the HEVC decoder so that it also obtains the prediction values for each pixel taking into account all the coding modes within the input bitstream. Second, we propose to modify the ISTA updating step by introducing encoding and decoding operators applied instead of the matrix multiplication by sensing matrix and its transpose, respectively. These operators use the obtained prediction values, as well as prediction mode, motion vectors, quantization step, and transform type extracted for each coding unit from the input bitstream in order to replicate the encoding and the decoding process except the entropy coding. Herewith, the ISTA thresholding stage is performed by an image or video enhancement neural network. Experimental results show that the proposed approach provides up to 1 dB improvement in Peak Signal-to-Noise Ratio (PSNR) compared to the state-of-the-art approaches such as Recursive Fusion and Deformable Spatiotemporal Attention (RFDA), Spatio-Temporal Detail Information Retrieval (STDR) and Coding Priors-Guided Aggregation (CPGA).
AbstractList This letter is dedicated to improving the quality of video sequences compressed by the H.265/HEVC standard. We propose to consider this problem as a signal recovery from incomplete measurements taken in the HEVC transform domain. The recovery could be obtained via [Formula Omitted]-minimization using the Iterative Shrinkage-Thresholding Algorithm (ISTA) well known in compressive sensing (CS) framework. However, in case of HEVC the ISTA updating step cannot be performed directly via matrix multiplications, since the sensing is performed using high-complex hybrid intra- and motion-compensated prediction in pixel domain, and the frame sensing matrix depends on the current and corresponding reference frames along with the encoder compression profile. In order to overcome these limitations, in this letter, we first propose to modify the HEVC decoder so that it also obtains the prediction values for each pixel taking into account all the coding modes within the input bitstream. Second, we propose to modify the ISTA updating step by introducing encoding and decoding operators applied instead of the matrix multiplication by sensing matrix and its transpose, respectively. These operators use the obtained prediction values, as well as prediction mode, motion vectors, quantization step, and transform type extracted for each coding unit from the input bitstream in order to replicate the encoding and the decoding process except the entropy coding. Herewith, the ISTA thresholding stage is performed by an image or video enhancement neural network. Experimental results show that the proposed approach provides up to 1 dB improvement in Peak Signal-to-Noise Ratio (PSNR) compared to the state-of-the-art approaches such as Recursive Fusion and Deformable Spatiotemporal Attention (RFDA), Spatio-Temporal Detail Information Retrieval (STDR) and Coding Priors-Guided Aggregation (CPGA).
This letter is dedicated to improving the quality of video sequences compressed by the H.265/HEVC standard. We propose to consider this problem as a signal recovery from incomplete measurements taken in the HEVC transform domain. The recovery could be obtained via <inline-formula><tex-math notation="LaTeX">l_{1}</tex-math></inline-formula>-minimization using the Iterative Shrinkage-Thresholding Algorithm (ISTA) well known in compressive sensing (CS) framework. However, in case of HEVC the ISTA updating step cannot be performed directly via matrix multiplications, since the sensing is performed using high-complex hybrid intra- and motion-compensated prediction in pixel domain, and the frame sensing matrix depends on the current and corresponding reference frames along with the encoder compression profile. In order to overcome these limitations, in this letter, we first propose to modify the HEVC decoder so that it also obtains the prediction values for each pixel taking into account all the coding modes within the input bitstream. Second, we propose to modify the ISTA updating step by introducing encoding and decoding operators applied instead of the matrix multiplication by sensing matrix and its transpose, respectively. These operators use the obtained prediction values, as well as prediction mode, motion vectors, quantization step, and transform type extracted for each coding unit from the input bitstream in order to replicate the encoding and the decoding process except the entropy coding. Herewith, the ISTA thresholding stage is performed by an image or video enhancement neural network. Experimental results show that the proposed approach provides up to 1 dB improvement in Peak Signal-to-Noise Ratio (PSNR) compared to the state-of-the-art approaches such as Recursive Fusion and Deformable Spatiotemporal Attention (RFDA), Spatio-Temporal Detail Information Retrieval (STDR) and Coding Priors-Guided Aggregation (CPGA).
Author Mahfod, Karam
Belyaev, Evgeny
Author_xml – sequence: 1
  givenname: Karam
  orcidid: 0009-0002-0660-9434
  surname: Mahfod
  fullname: Mahfod, Karam
  email: karammahfod@itmo.ru
  organization: ITMO University, St. Petersburg, Russia
– sequence: 2
  givenname: Evgeny
  orcidid: 0000-0003-1245-0140
  surname: Belyaev
  fullname: Belyaev, Evgeny
  organization: ITMO University, St. Petersburg, Russia
BookMark eNpFkE1Lw0AQhhepYFu9e_Cw4DnpfmdzlNraQkXr13XZZCeS0iR1NynUX29KC57mZXjeGXhGaFA3NSB0S0lMKUknq_fXmBEmY66YUIm-QEMqpY4YV3TQZ5KQKE2JvkKjEDaEEE21HKL1ImZKThazryl-hLxxZf2N96XFyxa8bcs94Ld-vQd_wHPfVHhZ502120ILeN3Zui1_weFnsKHzUEHdhmt0WdhtgJvzHKPP-exjuohWL0_L6cMqyplI2kimmdRMZdox7YhjTmuRu4xZASKTSa6E5TxlyhaO58JqXiSFTXnGeWFpj_Ixuj_d3fnmp4PQmk3T-bp_aThTOmUilbqnyInKfROCh8LsfFlZfzCUmKM404szR3HmLK6v3J0qJQD845RRqTjjf5p5aog
CODEN ISPLEM
Cites_doi 10.1109/MMSP48831.2020.9287147
10.1109/ICIP.2014.7025426
10.1109/TCSVT.2018.2867568
10.1109/LSP.2024.3429008
10.1609/aaai.v34i07.6697
10.1109/DSPA60853.2024.10510112
10.1109/TCSVT.2012.2221191
10.1109/LSP.2024.3407536
10.1049/iet-ipr.2019.0661
10.1109/76.889025
10.1109/CVPR52733.2024.00286
10.3390/s23031368
10.5555/3104322.3104374
10.1109/TMM.2013.2269315
10.1109/LSP.2022.3147441
10.1109/TPAMI.2019.2944806
10.1109/TIT.2006.871582
10.1109/CVPR.2016.302
10.1109/LCOMM.2017.2697428
10.1109/DSPA64310.2025.10977879
10.1109/ICCV48922.2021.00495
10.1007/978-3-319-51811-4_3
10.1109/TCSVT.2012.2221192
10.1109/EUSIPCO.2015.7362905
10.1145/3474085.3475710
10.1109/TIP.2003.819861
10.1109/TMM.2022.3214775
10.1109/TSP.2011.2170977
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LSP.2025.3624678
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2361
EndPage 4153
ExternalDocumentID 10_1109_LSP_2025_3624678
11215632
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AASAJ
AAWTH
AAYJJ
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c247t-59b5826b8d28d0d2d884cdb2a4e4b57c64a33926afd3c4a83f7fa93b33fa184c3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001608941800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1070-9908
IngestDate Thu Nov 06 14:18:39 EST 2025
Sat Nov 29 06:54:40 EST 2025
Wed Nov 19 08:27:08 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-59b5826b8d28d0d2d884cdb2a4e4b57c64a33926afd3c4a83f7fa93b33fa184c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0002-0660-9434
0000-0003-1245-0140
PQID 3268924958
PQPubID 75747
PageCount 5
ParticipantIDs ieee_primary_11215632
proquest_journals_3268924958
crossref_primary_10_1109_LSP_2025_3624678
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE signal processing letters
PublicationTitleAbbrev LSP
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
(ref24) 2017
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref15
  doi: 10.1109/MMSP48831.2020.9287147
– ident: ref23
  doi: 10.1109/ICIP.2014.7025426
– ident: ref6
  doi: 10.1109/TCSVT.2018.2867568
– ident: ref8
  doi: 10.1109/LSP.2024.3429008
– ident: ref26
  doi: 10.1609/aaai.v34i07.6697
– ident: ref22
  doi: 10.1109/DSPA60853.2024.10510112
– ident: ref1
  doi: 10.1109/TCSVT.2012.2221191
– ident: ref7
  doi: 10.1109/LSP.2024.3407536
– ident: ref21
  doi: 10.1049/iet-ipr.2019.0661
– ident: ref18
  doi: 10.1109/76.889025
– ident: ref9
  doi: 10.1109/CVPR52733.2024.00286
– ident: ref13
  doi: 10.3390/s23031368
– ident: ref12
  doi: 10.5555/3104322.3104374
– ident: ref19
  doi: 10.1109/TMM.2013.2269315
– ident: ref27
  doi: 10.1109/LSP.2022.3147441
– ident: ref2
  doi: 10.1109/TPAMI.2019.2944806
– ident: ref10
  doi: 10.1109/TIT.2006.871582
– ident: ref14
  doi: 10.1109/CVPR.2016.302
– ident: ref16
  doi: 10.1109/LCOMM.2017.2697428
– ident: ref17
  doi: 10.1109/DSPA64310.2025.10977879
– ident: ref25
  doi: 10.1109/ICCV48922.2021.00495
– ident: ref3
  doi: 10.1007/978-3-319-51811-4_3
– ident: ref28
  doi: 10.1109/TCSVT.2012.2221192
– ident: ref20
  doi: 10.1109/EUSIPCO.2015.7362905
– ident: ref4
  doi: 10.1145/3474085.3475710
– ident: ref29
  doi: 10.1109/TIP.2003.819861
– year: 2017
  ident: ref24
  article-title: A fork of libav containing only essential files for decoding HEVC content
– ident: ref5
  doi: 10.1109/TMM.2022.3214775
– ident: ref11
  doi: 10.1109/TSP.2011.2170977
SSID ssj0008185
Score 2.4387808
Snippet This letter is dedicated to improving the quality of video sequences compressed by the H.265/HEVC standard. We propose to consider this problem as a signal...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 4149
SubjectTerms Binary sequences
Coding
compressive sensing
Decoding
Encoding
Filtering
Formability
HEVC
Image reconstruction
Information retrieval
Neural networks
Operators (mathematics)
Pixels
Recovery
Sensors
Signal reconstruction
Signal to noise ratio
Silicon
Transforms
Video compression
video enhancement
Video sequences
Videos
Title H.265/HEVC Decoding via Iterative Recovery From Incomplete Quantized Measurements
URI https://ieeexplore.ieee.org/document/11215632
https://www.proquest.com/docview/3268924958
Volume 32
WOSCitedRecordID wos001608941800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2361
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008185
  issn: 1070-9908
  databaseCode: RIE
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCBN6JQkAcWhrSJHSf2iEqrIpWqFVB1i_yK1IEW9SXBr-fspBSEGNgyJFb0-fzdfWffGaEb4mtkhAwshL8BGIVLNEkb2DSC9QEegfm-BcNu2uvx0Uj0y2J1XwtjrfWHz2zdPfq9fDPVS5cqa0SuFUJCgXG30zQpirW-aNd5nuKAYRgAxfL1nmQoGt2nPihBwurA1kAM_IcP8peq_GJi717aB__8sUO0X8aR-K6Y-CO0ZSfHaO9bd8ETNOjUScIandawie9BZTovhVdjiR98J2WgOezEJ9jyO27Ppq8YuMIdMIcwGg-WgPj4wxr8uEkizk_RS7v13OwE5Q0KgSZxugiYUAz0g-KGcBMaYjiPtVFExjZWLNVJLCkESInMDdWx5DRPcymoojSXIP00PUOVyXRizxGWwkQqJrlxDfKF5opZLWKRR4IbqqSsots1ptlb0Sgj8wIjFBngnzn8sxL_Kjp1GG7eK-Grotp6FrJyKc0ziC-5E4mMX_zx2SXadaMXiZEaqixmS3uFdvRqMZ7Prr2VfAJGvLiu
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVQQQIO7Iiy-sCFQ9rES2MfEVAFEapWLOotcmxH6oEWdZPg6xk7KYsQB245JHL0PH4zb-wZI3ROfI2MVIGF8DcAo3CJJmUDG0ewPsAjcN-34DmNOx3R78tuVazua2Gstf7wmW24R7-Xb0Z65lJlzci1QmhRYNxlzhgJy3KtT-J1vqc8YhgGQLJisSsZymb60AUtSHgD-BqoQfzwQv5alV9c7B1Me_Ofv7aFNqpIEl-WU7-NluxwB61_6y-4i3pJg7R4M7l5vsLXoDOdn8LzgcK3vpcyEB128hOs-Q23x6MXDGzhjphDII17M8B88G4Nvv9KI0720FP75vEqCao7FAJNWDwNuMw5KIhcGCJMaIgRgmmTE8Usy3msW0xRCJFaqjBUMyVoERdK0pzSQoH403Qf1YajoT1AWEkT5YwUxrXIl1rk3GrJZBFJYWiuVB1dLDDNXstWGZmXGKHMAP_M4Z9V-NfRnsPw670Kvjo6XsxCVi2mSQYRpnAykYvDPz47Q6vJ432apbeduyO05kYq0yTHqDYdz-wJWtHz6WAyPvUW8wEPTLv1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=H.265%2FHEVC+Decoding+via+Iterative+Recovery+From+Incomplete+Quantized+Measurements&rft.jtitle=IEEE+signal+processing+letters&rft.au=Mahfod%2C+Karam&rft.au=Belyaev%2C+Evgeny&rft.date=2025&rft.pub=IEEE&rft.issn=1070-9908&rft.volume=32&rft.spage=4149&rft.epage=4153&rft_id=info:doi/10.1109%2FLSP.2025.3624678&rft.externalDocID=11215632
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon