Multi-User Pilot Pattern Optimization for Channel Extrapolation in 5G NR Systems

Pilot pattern optimization in orthogonal frequency division multiplexing (OFDM) systems has been widely investigated due to its positive impact on channel estimation. In this paper, we consider the problem of multi-user pilot pattern optimization for OFDM systems. In particular, the goal is to enhan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications Jg. 24; H. 7; S. 6166 - 6179
Hauptverfasser: Wan, Yubo, Liu, An, Quek, Tony Q. S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.07.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1536-1276, 1558-2248
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pilot pattern optimization in orthogonal frequency division multiplexing (OFDM) systems has been widely investigated due to its positive impact on channel estimation. In this paper, we consider the problem of multi-user pilot pattern optimization for OFDM systems. In particular, the goal is to enhance channel extrapolation performance for 5G NR systems by optimizing multi-user pilot patterns in frequency-domain. We formulate a novel pilot pattern optimization problem with the objective of minimizing the maximum integrated side-lobe level (ISL) among all users, subject to a statistical resolution limit (SRL) constraint. Unlike existing literature that only utilizes ISL for controlling side-lobe levels of the ambiguity function, we also leverage ISL to mitigate multi-user interference in code-domain multiplexing. Additionally, the introduced SRL constraint ensures sufficient delay resolution of the system to resolve multipath, thereby improving channel extrapolation performance. Then, we employ the estimation of distribution algorithm (EDA) to solve the formulated problem in an offline manner. Finally, we extend the formulated multi-user pilot pattern optimization problem to a multiband scenario, in which multiband gains can be exploited to improve channel extrapolation performance. Simulation results demonstrate that the optimized pilot pattern yields significant performance gains in channel extrapolation over the conventional pilot patterns.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2025.3552064