Reforming Quantum Microgrid Formation
This letter introduces a novel compact and lossless quantum microgrid formation (qMGF) approach to achieve efficient operational optimization of the power system and improvement of resilience. This is achieved through lossless reformulation to ensure that the results are equivalent to those produced...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on power systems Jg. 40; H. 2; S. 1977 - 1980 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.03.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0885-8950, 1558-0679 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This letter introduces a novel compact and lossless quantum microgrid formation (qMGF) approach to achieve efficient operational optimization of the power system and improvement of resilience. This is achieved through lossless reformulation to ensure that the results are equivalent to those produced by the classical MGF by exploiting graph-theory-empowered quadratic unconstrained binary optimization (QUBO) that avoids the need for redundant encoding of continuous variables. Additionally, the qMGF approach utilizes a compact formulation that requires significantly fewer qubits compared to other quantum methods thereby enabling a high-accuracy and low-complexity deployment of qMGF on near-term quantum computers. Case studies on real quantum processing units (QPUs) empirically demonstrated that qMGF can achieve the same high accuracy as classic results with a significantly reduced number of qubits. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0885-8950 1558-0679 |
| DOI: | 10.1109/TPWRS.2025.3527817 |