Deep Learning-Based Auto-Encoder for Time-Offset Sub-Faster-Than-Nyquist Downlink NOMA With Timing Errors and Imperfect CSI
This paper presents architecture designs and performance evaluations for the encoding and decoding of transmitted and received sequences for downlink time-offset sub-faster-than-Nyquist non-orthogonal multiple access signaling (TO-sFTN-NOMA). A conventional singular value decomposition (SVD)-based s...
Uložené v:
| Vydané v: | IEEE journal of selected topics in signal processing Ročník 18; číslo 7; s. 1178 - 1193 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.10.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1932-4553, 1941-0484 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!