IDM-Net: A Multi-Task Supported Encoder-Decoder Framework for Magnetic Field Inverse Design

We propose an end-to-end framework for inversely designing permanent magnets named IDM-Net. It utilizes a fundamental encoder-decoder architecture to handle multiple tasks. In more detail, the encoder is responsible for deeply extracting features of the magnetic field and categorizing different type...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on applied superconductivity Ročník 34; číslo 8; s. 1 - 5
Hlavní autoři: Wang, Jiaqi, Zhang, Qiankun
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.11.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1051-8223, 1558-2515
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose an end-to-end framework for inversely designing permanent magnets named IDM-Net. It utilizes a fundamental encoder-decoder architecture to handle multiple tasks. In more detail, the encoder is responsible for deeply extracting features of the magnetic field and categorizing different types of magnet shapes. The decoder focuses on inferring significant properties of each specific type of magnet shape, including size, position, and magnetization intensity. Such architecture breaks the critical limitation of designing only a single type of magnet in literature. Further, it allows for flexible choices of encoders' networks, such as convolutional neural networks (CNNs) or transformers, which are widely used in various computer vision tasks. Our experimental results demonstrate that the ResNet50-based and ViT-B/16-based IDM-Nets achieve accuracies of 93.8% and 91.4% in magnet shapes classification and errors of 0.31% and 0.33% in predicting magnetic properties, respectively.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1051-8223
1558-2515
DOI:10.1109/TASC.2024.3465378