LSCMNet: A Lightweight Segmentation Network Based on Co-Occurring Matrix for Seismic Image
Seismic image segmentation is important in geological interpretation. In recent years, numerous studies have leveraged texture features to analyze seismic images. However, traditional texture feature extraction methods are computationally intensive and cannot be updated through back-propagation. To...
Uložené v:
| Vydané v: | IEEE geoscience and remote sensing letters Ročník 22; s. 1 - 5 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1545-598X, 1558-0571 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Seismic image segmentation is important in geological interpretation. In recent years, numerous studies have leveraged texture features to analyze seismic images. However, traditional texture feature extraction methods are computationally intensive and cannot be updated through back-propagation. To address these challenges, we propose a model named lightweight segmentation network based on co-occurring matrix (LSCMNet). The overall architecture of LSCMNet employs an asymmetric encoder-decoder structure. The encoder mainly consists of a lightweight bottleneck that integrates the parametric co-occurrence matrix (CM) model based on the convolutional neural network (CNN) for segmentation (S-PCMCNN) module, along with channel shuffle and split for feature fusion, enhancing the model representational capacity. The pyramid decoder encompasses a spatial attention mechanism. This design significantly reduces the parameters while maintaining accuracy in seismic image segmentation. In the application of igneous rocks, an ablation experiment was conducted to validate the effectiveness of the S-PCMCNN module. Moreover, compared with other classical segmentation models, LSCMNet demonstrates superior segmentation accuracy in few-shot scenarios while having fewer parameters and floating point operations (FLOPs). |
|---|---|
| AbstractList | Seismic image segmentation is important in geological interpretation. In recent years, numerous studies have leveraged texture features to analyze seismic images. However, traditional texture feature extraction methods are computationally intensive and cannot be updated through back-propagation. To address these challenges, we propose a model named lightweight segmentation network based on co-occurring matrix (LSCMNet). The overall architecture of LSCMNet employs an asymmetric encoder–decoder structure. The encoder mainly consists of a lightweight bottleneck that integrates the parametric co-occurrence matrix (CM) model based on the convolutional neural network (CNN) for segmentation (S-PCMCNN) module, along with channel shuffle and split for feature fusion, enhancing the model representational capacity. The pyramid decoder encompasses a spatial attention mechanism. This design significantly reduces the parameters while maintaining accuracy in seismic image segmentation. In the application of igneous rocks, an ablation experiment was conducted to validate the effectiveness of the S-PCMCNN module. Moreover, compared with other classical segmentation models, LSCMNet demonstrates superior segmentation accuracy in few-shot scenarios while having fewer parameters and floating point operations (FLOPs). |
| Author | Fan, Linqian Wang, Yonghao Lu, Wenkai |
| Author_xml | – sequence: 1 givenname: Linqian orcidid: 0009-0005-3574-2025 surname: Fan fullname: Fan, Linqian email: flq24@mails.tsinghua.edu.cn organization: Department of Automation, State Key Laboratory of Intelligent Technology and Systems, Institute for Artificial Intelligence (THUAI), Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China – sequence: 2 givenname: Wenkai orcidid: 0000-0003-0249-2144 surname: Lu fullname: Lu, Wenkai email: lwkmf@mail.tsinghua.edu.cn organization: Department of Automation, State Key Laboratory of Intelligent Technology and Systems, Institute for Artificial Intelligence (THUAI), Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China – sequence: 3 givenname: Yonghao orcidid: 0000-0001-5894-5099 surname: Wang fullname: Wang, Yonghao email: yonghao-20@mails.tsinghua.edu.cn organization: Department of Automation, State Key Laboratory of Intelligent Technology and Systems, Institute for Artificial Intelligence (THUAI), Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China |
| BookMark | eNpNkE1Lw0AQhhepYFv9AYKHBc-p-5lsvNWgtZBasAriJWw2k7jVZusmpfrvTWgPXmaGmfedGZ4RGtSuBoQuKZlQSuKbdPa8mjDC5IRLpggPT9CQSqkCIiM66GshAxmrtzM0apo1IUwoFQ3Re7pKFk_Q3uIpTm310e6hj3gF1QbqVrfW1bib753_xHe6gQJ3jcQFS2N23tu6wgvdevuDS-c7l2021uD5Rldwjk5L_dXAxTGP0evD_UvyGKTL2TyZpoFhImyD2LDuuajQMQcZFySXpuQFFFSqXOlcaKpyAkKFBZNlFJs4EpKHISOCGily4GN0fdi79e57B02brd3O193JjNOQ8ogyEncqelAZ75rGQ5ltvd1o_5tRkvUIsx5h1iPMjgg7z9XBYwHgn17xUAnO_wD4i23X |
| CODEN | IGRSBY |
| Cites_doi | 10.1109/CVPR.2018.00716 10.1109/TGRS.2023.3288737 10.1109/CVPR.2016.308 10.1038/s41598-023-31205-7 10.1109/TSMC.1973.4309314 10.1109/ICIP.2019.8803154 10.2352/ISSN.2470-1173.2017.7.MWSF-325 10.1109/CVPR.2016.90 10.48550/arXiv.1802.02611 10.1109/TGRS.2023.3288668 10.48550/arXiv.1511.07122 10.1007/978-3-319-24574-4_28 10.1109/TGRS.2022.3172997 10.1109/TPAMI.2016.2644615 10.1109/LGRS.2022.3193567 10.1109/TIFS.2012.2190402 10.1109/TGRS.2023.3299378 10.1109/TCSVT.2022.3216905 10.1190/INT-2018-0076.1 10.1109/CVPR.2017.106 10.1109/CVPR.2018.00745 10.1109/JSTARS.2024.3381454 10.1109/LGRS.2023.3287320 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
| DOI | 10.1109/LGRS.2025.3528036 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology |
| EISSN | 1558-0571 |
| EndPage | 5 |
| ExternalDocumentID | 10_1109_LGRS_2025_3528036 10836843 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2018YFA0702501 funderid: 10.13039/501100001809 – fundername: Major Research Project on Scientific Instrument Development, China National Natural Science Foundation (Recommended via Department) grantid: 42327901 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
| ID | FETCH-LOGICAL-c246t-9c21547da93e59d0b5cf3ded158b8ab4a18b0e486d25f79c97453662041c54be3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001410280000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-598X |
| IngestDate | Mon Jun 30 10:07:54 EDT 2025 Sat Nov 29 05:54:26 EST 2025 Wed Aug 27 01:53:10 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c246t-9c21547da93e59d0b5cf3ded158b8ab4a18b0e486d25f79c97453662041c54be3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0249-2144 0000-0001-5894-5099 0009-0005-3574-2025 |
| PQID | 3161371209 |
| PQPubID | 75725 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_10836843 proquest_journals_3161371209 crossref_primary_10_1109_LGRS_2025_3528036 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE geoscience and remote sensing letters |
| PublicationTitleAbbrev | LGRS |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 Paszke (ref13) 2016 ref24 ref23 ref25 ref20 ref22 ref21 Kusnadi (ref8) ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref14 doi: 10.1109/CVPR.2018.00716 – ident: ref1 doi: 10.1109/TGRS.2023.3288737 – ident: ref12 doi: 10.1109/CVPR.2016.308 – ident: ref9 doi: 10.1038/s41598-023-31205-7 – ident: ref7 doi: 10.1109/TSMC.1973.4309314 – ident: ref17 doi: 10.1109/ICIP.2019.8803154 – ident: ref15 doi: 10.2352/ISSN.2470-1173.2017.7.MWSF-325 – ident: ref16 doi: 10.1109/CVPR.2016.90 – ident: ref24 doi: 10.48550/arXiv.1802.02611 – start-page: 1 volume-title: Proc. Int. Conf. Smart Comput. Appl. (ICSCA) ident: ref8 article-title: Face recognition accuracy improving using gray level co-occurrence matrix selection feature algorithm – ident: ref2 doi: 10.1109/TGRS.2023.3288668 – ident: ref18 doi: 10.48550/arXiv.1511.07122 – volume-title: arXiv:1606.02147 year: 2016 ident: ref13 article-title: ENet: A deep neural network architecture for real-time semantic segmentation – ident: ref22 doi: 10.1007/978-3-319-24574-4_28 – ident: ref4 doi: 10.1109/TGRS.2022.3172997 – ident: ref23 doi: 10.1109/TPAMI.2016.2644615 – ident: ref25 doi: 10.1109/LGRS.2022.3193567 – ident: ref10 doi: 10.1109/TIFS.2012.2190402 – ident: ref3 doi: 10.1109/TGRS.2023.3299378 – ident: ref11 doi: 10.1109/TCSVT.2022.3216905 – ident: ref5 doi: 10.1190/INT-2018-0076.1 – ident: ref19 doi: 10.1109/CVPR.2017.106 – ident: ref20 doi: 10.1109/CVPR.2018.00745 – ident: ref21 doi: 10.1109/JSTARS.2024.3381454 – ident: ref6 doi: 10.1109/LGRS.2023.3287320 |
| SSID | ssj0024887 |
| Score | 2.409259 |
| Snippet | Seismic image segmentation is important in geological interpretation. In recent years, numerous studies have leveraged texture features to analyze seismic... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Ablation Accuracy Artificial neural networks Asymmetric encoder-decoder Back propagation networks co-occurring matrix Coders Computer architecture Convolution Decoding Feature extraction Floating point arithmetic Geoscience and remote sensing Igneous rocks Image processing Image segmentation Kernel lightweight network Modules Neural networks Parameters Salt Seismic activity seismic segmentation Surface treatment Texture |
| Title | LSCMNet: A Lightweight Segmentation Network Based on Co-Occurring Matrix for Seismic Image |
| URI | https://ieeexplore.ieee.org/document/10836843 https://www.proquest.com/docview/3161371209 |
| Volume | 22 |
| WOSCitedRecordID | wos001410280000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0571 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024887 issn: 1545-598X databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGH5xoujFj6k4nZKDJyEzbZo08TaHTmEb4hSGl7Imqe6wTbb5sX9vknZMEA_eSmlCyZPk_Uje5wE4CwlLNdcZ5lxqHGWKYqlFgDOS2YBLUwt05sUm4k5H9HryvihW97Uwxhh_-czU3KM_y9dj9e5SZXaFC8pFREtQimOeF2stifWEV8NzLgFmUvSKI8yAyItW86FrQ8GQ1RyXCfF0zEsj5FVVfm3F3r7cbP_zz3Zgq3AkUT1HfhdWzKgMG4Wm-eu8DOtNL9o734PnVrfR7pjZJaqjlgvGP30-FHXNy7AoPRqhTn4fHF1Zs6aRfdEYY0dBPHGJP9R2TP5fyHq4ttVgOhwodDe0W9E-PN1cPzZucaGpgFUY8RmWytr4KNZ9SQ2TmqRMZVQbHTCRin4a9QOREhMJrkOWxVLZcINR7kjrA8Wi1NADWB2NR-YQUCZUSOK-MoSbKI21kMwGX1pKOysk5bQC54tBTt5y6ozEhxxEJg6RxCGSFIhUYN-N6o8P8wGtQHWBS1KsrmlCrZtKY1f1e_RHs2PYdL3nuZIqrM4m7-YE1tTHbDCdnPqJ8w1VJr9R |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT-MwGP3EwIzgwo4o2_jAaSSDEy-xuZWKTZNGaMpIFZeosR3ooS1qy9J_j-0EgYQ4cIuiWI78bH-L_b0HcBgTXhhhSiyEMpiVmmJlZIRLUrqAy1AHdBnEJpIsk92uuq6L1UMtjLU2XD6zR_4xnOWbkX70qTK3wiUVktEfsMAZi0lVrvVOrSeDHp53CjBXslsfYkZEHacX_zouGIz5kWczIYGQ-d0MBV2VT5txsDDnK9_8t1VYrl1J1KywX4M5O1yHxVrV_H62Dr8ugmzvbANu006rndnpCWqi1IfjzyEjijr2blAXHw1RVt0IR6fOsBnkXrRG2JMQj33qD7U9l_8Lcj6ua9WfDPoaXQ3cZrQJ_8_PblqXuFZVwDpmYoqVdlaeJaanqOXKkILrkhprIi4L2StYL5IFsUwKE_MyUdoFHJwKT1sfac4KS7dgfjga2m1ApdQxSXraEmFZkRipuAu_jFJuXigqaAP-vA1y_lCRZ-Qh6CAq94jkHpG8RqQBm35UP3xYDWgD9t5wyev1Ncmpc1Rp4ut-d75o9hsWL2_aaZ5eZX93Ycn3VGVO9mB-On60-_BTP037k_FBmESvdxvCmA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LSCMNet%3A+A+Lightweight+Segmentation+Network+Based+on+Co-Occurring+Matrix+for+Seismic+Image&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Fan%2C+Linqian&rft.au=Lu%2C+Wenkai&rft.au=Wang%2C+Yonghao&rft.date=2025&rft.pub=IEEE&rft.issn=1545-598X&rft.volume=22&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2025.3528036&rft.externalDocID=10836843 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |