Adaptive Environment Generation for Continual Learning: Integrating Constraint Logic Programming With Deep Reinforcement Learning
In this article, we introduce a novel framework that combines constraint logic programming (CLP) with deep reinforcement learning (DRL) to create adaptive environments for continual learning. We focus on two challenging domains: Sudoku puzzles and scheduling problems, where environment complexity ev...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on cognitive and developmental systems Jg. 17; H. 3; S. 540 - 553 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
01.06.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2379-8920, 2379-8939 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this article, we introduce a novel framework that combines constraint logic programming (CLP) with deep reinforcement learning (DRL) to create adaptive environments for continual learning. We focus on two challenging domains: Sudoku puzzles and scheduling problems, where environment complexity evolves based on the agent's performance. By integrating CLP, we dynamically adjust problem difficulty in response to the agent's learning trajectory, ensuring a progressively challenging environment that fosters enhanced problem-solving skills. Empirical results across 500 000 episodes show substantial improvements in solve rates, increasing from 6% to 86% for sudoku puzzles and 7% to 79% for scheduling problems, alongside significant reductions in the average steps required to solve each problem. The proposed adaptive environment generation demonstrates the potential of CLP in advancing RL agents' continual learning capabilities by dynamically regulating complexity, thus improving their adaptability and learning efficiency. This framework contributes to the broader fields of reinforcement learning and procedural content generation by introducing an innovative approach to continual adaptation in complex environments. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2379-8920 2379-8939 |
| DOI: | 10.1109/TCDS.2024.3485482 |