Joint Source, Channel, and Space-Time Coding of Progressive Bitstream in MIMO Channels
The optimization of joint source and channel coding for a sequence of numerous progressive packets has been a challenging problem. Further, the problem becomes more complicated if the space-time coding is also involved with the optimization in a multiple-input multiple-output (MIMO) system. This is...
Uloženo v:
| Vydáno v: | IEEE transactions on communications Ročník 68; číslo 4; s. 2551 - 2565 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0090-6778, 1558-0857 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The optimization of joint source and channel coding for a sequence of numerous progressive packets has been a challenging problem. Further, the problem becomes more complicated if the space-time coding is also involved with the optimization in a multiple-input multiple-output (MIMO) system. This is because the number of ways of jointly assigning channel codes and space-time codes to progressive packets is much larger than that of solely assigning channel codes to the packets. To our knowledge, there is no complete and feasible solution for the optimization of joint source, channel, and space-time coding of progressive packets. This paper applies a parametric approach to address such a highly nonlinear optimization problem in MIMO systems. We use the parametric methodology and derive some relevant properties, which are exploited to propose an efficient optimization method where the joint assignment of channel codes and space-time codes to the packets can be optimized in a packet-by-packet manner. As a result, the computational complexity of the proposed method linearly increases in the number of packets, whereas that of the exhaustive search exponentially increases in the number of packets. The numerical results show that the proposed method significantly improves the peak-signal-to-noise ratio performance of the conventional rate-based optimal solution in a MIMO system. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0090-6778 1558-0857 |
| DOI: | 10.1109/TCOMM.2019.2945788 |