Batch Processing for Enhanced InISAR Imaging of Space Targets
High-precision 3-D reconstruction of satellites is critical for automatic target recognition (ATR). This article introduces a batch processing-based method to enhance the performance of interferometric inverse synthetic aperture radar (InISAR) imaging. By utilizing the phase information within the i...
Uloženo v:
| Vydáno v: | IEEE transactions on geoscience and remote sensing Ročník 62; s. 1 - 15 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0196-2892, 1558-0644 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | High-precision 3-D reconstruction of satellites is critical for automatic target recognition (ATR). This article introduces a batch processing-based method to enhance the performance of interferometric inverse synthetic aperture radar (InISAR) imaging. By utilizing the phase information within the inverse synthetic aperture radar (ISAR) image sequence, the main error components of height estimation are accurately estimated via the ordinary least squares (OLSs) method. In addition, an arc interval determination strategy for optimizing the batch processing performance is proposed. To ensure accurate phase unwrapping in challenging imaging scenarios, a phase unwrapping method based on the minimum standard deviation criterion is also proposed. Simulation experiments validate the effectiveness and superiority of the proposed algorithms. Compared with the traditional two-ISAR-image InISAR imaging method, the batch processing approach improves the precision of height estimation by approximately 50% with an arc length of approximately 15°. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0196-2892 1558-0644 |
| DOI: | 10.1109/TGRS.2024.3492192 |