Battery Degradation Oriented Active Control Strategy by Using a Reinforcement Learning Algorithm in Hybrid Energy Storage System
The integration of ultracapacitors (UCs) into hybrid energy storage systems is a solution to mitigate battery degradation. Traditional strategies focus on fuel cell and battery power regulation while treating UC management as a passive element, resulting in suboptimal UC utilization. To optimize the...
Saved in:
| Published in: | IEEE transactions on industrial electronics (1982) Vol. 72; no. 5; pp. 4922 - 4932 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.05.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0278-0046, 1557-9948 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The integration of ultracapacitors (UCs) into hybrid energy storage systems is a solution to mitigate battery degradation. Traditional strategies focus on fuel cell and battery power regulation while treating UC management as a passive element, resulting in suboptimal UC utilization. To optimize the energy utilization of UCs, this article proposes an active state control strategy within the hybrid system. Initially, leveraging the battery severity factor, the optimal power split strategy for HESS is proposed for a reference state-of-charge (SOC) of UC. Subsequently, a driving pattern severity factor is designed, and an online self-learning Markov predictor is employed to quantify the operational state of vehicle. To provide optimal reference SOC guidance to HESS in real time, a reinforcement learning algorithm featuring an experience replay mechanism is developed. Utilizing pretrained agents that integrate vehicle driving state abstraction parameters, the system generates the reference SOC of UC, enabling the optimal battery-UC power split in real time. Both numerical and semiphysical validations confirm the efficacy of the proposed strategy in enhancing the power output ratio of UC, optimizing energy storage space utilization, and reducing the battery severity factor, consequently improving overall battery lifespan. |
|---|---|
| AbstractList | The integration of ultracapacitors (UCs) into hybrid energy storage systems is a solution to mitigate battery degradation. Traditional strategies focus on fuel cell and battery power regulation while treating UC management as a passive element, resulting in suboptimal UC utilization. To optimize the energy utilization of UCs, this article proposes an active state control strategy within the hybrid system. Initially, leveraging the battery severity factor, the optimal power split strategy for HESS is proposed for a reference state-of-charge (SOC) of UC. Subsequently, a driving pattern severity factor is designed, and an online self-learning Markov predictor is employed to quantify the operational state of vehicle. To provide optimal reference SOC guidance to HESS in real time, a reinforcement learning algorithm featuring an experience replay mechanism is developed. Utilizing pretrained agents that integrate vehicle driving state abstraction parameters, the system generates the reference SOC of UC, enabling the optimal battery-UC power split in real time. Both numerical and semiphysical validations confirm the efficacy of the proposed strategy in enhancing the power output ratio of UC, optimizing energy storage space utilization, and reducing the battery severity factor, consequently improving overall battery lifespan. |
| Author | Xu, Xinhao Huang, Hao Lin, Xinyou |
| Author_xml | – sequence: 1 givenname: Xinyou orcidid: 0000-0002-4061-1055 surname: Lin fullname: Lin, Xinyou email: linxinyoou@fzu.edu.cn organization: School of Mechanical Engineering and Auto Mobile, Fuzhou University, Fuzhou, China – sequence: 2 givenname: Hao orcidid: 0009-0007-7228-4208 surname: Huang fullname: Huang, Hao email: 230220018@fzu.edu.cn organization: School of Mechanical Engineering and Auto Mobile, Fuzhou University, Fuzhou, China – sequence: 3 givenname: Xinhao orcidid: 0009-0002-4107-8026 surname: Xu fullname: Xu, Xinhao email: xinhaoxu@tesla.com organization: School of Mechanical Engineering and Auto Mobile, Fuzhou University, Fuzhou, China |
| BookMark | eNpNkDFvwjAQRq2KSgXavUMHS51DbcdJnJFSWpCQkArMkZNcUiNi04uplK0_vUEwdLrhvved7o3IwDoLhDxyNuGcpS_b5XwimJCTUCquFLshQx5FSZCmUg3IkIlEBYzJ-I6M2nbPGJcRj4bk91V7D9jRN6hRl9obZ-kaDVgPJZ0W3vwAnTnr0R3oxqP2UHc07-iuNbammn6CsZXDApoeoSvQaM-L6aF2aPxXQ42liy5HU9K5BezhjXeoa6CbrvXQ3JPbSh9aeLjOMdm9z7ezRbBafyxn01VQCBn5QLEqjHSpmI6SuEi4znmSJ6LgoArVfyzjKg5LUYo01zHPZSpFXGiuq7LKdSohHJPnS-8R3fcJWp_t3QltfzILe19c8FCKPsUuqQJd2yJU2RFNo7HLOMvOnrPec3b2nF0998jTBTEA8C-eSBaqNPwD1e181w |
| CODEN | ITIED6 |
| Cites_doi | 10.1016/j.ijepes.2012.06.026 10.1109/TIE.2015.2475419 10.1016/j.epsr.2023.109235 10.1109/TITS.2022.3233564 10.1016/j.apenergy.2019.113707 10.1109/TMECH.2018.2832019 10.1109/TIE.2020.2977574 10.1016/j.jpowsour.2019.04.083 10.1109/TTE.2015.2471180 10.1109/TPEL.2020.3028154 10.1109/TMECH.2017.2707338 10.1016/j.enconman.2022.116383 10.1016/j.energy.2023.129128 10.1016/j.jpowsour.2020.227964 10.1109/TIE.2020.2979528 10.1109/TVT.2022.3168870 10.1016/j.ijhydene.2020.01.017 10.1016/j.energy.2024.130728 10.1016/j.jpowsour.2018.05.041 10.1109/TVT.2020.3028089 10.1109/TIE.2021.3062273 10.1109/TIE.2018.2850030 10.1016/j.energy.2022.125620 10.1016/j.energy.2023.129173 10.1016/j.energy.2021.121593 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TIE.2024.3481880 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1557-9948 |
| EndPage | 4932 |
| ExternalDocumentID | 10_1109_TIE_2024_3481880 10740389 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 52272389 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 TWZ VH1 VJK AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c245t-80f35ad80a576c71ab17b72c1e8c848146f63d2d29ba61b49426ca1afdfba94e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001346681900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-0046 |
| IngestDate | Tue Jul 22 16:40:56 EDT 2025 Sat Nov 29 08:04:56 EST 2025 Wed Aug 27 02:04:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c245t-80f35ad80a576c71ab17b72c1e8c848146f63d2d29ba61b49426ca1afdfba94e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0002-4107-8026 0009-0007-7228-4208 0000-0002-4061-1055 |
| PQID | 3188121342 |
| PQPubID | 85464 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_3188121342 ieee_primary_10740389 crossref_primary_10_1109_TIE_2024_3481880 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-01 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on industrial electronics (1982) |
| PublicationTitleAbbrev | TIE |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 Sheng (ref6) 2022; 47 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref8 ref7 ref9 ref4 ref3 ref5 |
| References_xml | – ident: ref10 doi: 10.1016/j.ijepes.2012.06.026 – ident: ref17 doi: 10.1109/TIE.2015.2475419 – ident: ref12 doi: 10.1016/j.epsr.2023.109235 – ident: ref23 doi: 10.1109/TITS.2022.3233564 – ident: ref24 doi: 10.1016/j.apenergy.2019.113707 – ident: ref9 doi: 10.1109/TMECH.2018.2832019 – ident: ref1 doi: 10.1109/TIE.2020.2977574 – ident: ref7 doi: 10.1016/j.jpowsour.2019.04.083 – ident: ref25 doi: 10.1109/TTE.2015.2471180 – ident: ref4 doi: 10.1109/TPEL.2020.3028154 – ident: ref18 doi: 10.1109/TMECH.2017.2707338 – ident: ref15 doi: 10.1016/j.enconman.2022.116383 – ident: ref16 doi: 10.1016/j.energy.2023.129128 – ident: ref20 doi: 10.1016/j.jpowsour.2020.227964 – ident: ref2 doi: 10.1109/TIE.2020.2979528 – ident: ref21 doi: 10.1109/TVT.2022.3168870 – ident: ref5 doi: 10.1016/j.ijhydene.2020.01.017 – ident: ref26 doi: 10.1016/j.energy.2024.130728 – volume: 47 year: 2022 ident: ref6 article-title: Experimental investigation of supercapacitor based regenerative energy storage for a fuel cell vehicle equipped with an alternator publication-title: Int. J. Hydrogen Energy – ident: ref13 doi: 10.1016/j.jpowsour.2018.05.041 – ident: ref14 doi: 10.1109/TVT.2020.3028089 – ident: ref22 doi: 10.1109/TIE.2021.3062273 – ident: ref3 doi: 10.1109/TIE.2018.2850030 – ident: ref8 doi: 10.1016/j.energy.2022.125620 – ident: ref11 doi: 10.1016/j.energy.2023.129173 – ident: ref19 doi: 10.1016/j.energy.2021.121593 |
| SSID | ssj0014515 |
| Score | 2.4813442 |
| Snippet | The integration of ultracapacitors (UCs) into hybrid energy storage systems is a solution to mitigate battery degradation. Traditional strategies focus on fuel... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 4922 |
| SubjectTerms | Active control Algorithms Batteries Control systems Deep reinforcement learning (RL) Degradation Electric charge Energy management Energy storage Energy utilization fuel cell hybrid electric vehicle (FCHEV) Fuel cells hybrid energy storage system (HESS) Hybrid systems Machine learning Numerical models Optimization Power generation Real time Real-time systems State of charge |
| Title | Battery Degradation Oriented Active Control Strategy by Using a Reinforcement Learning Algorithm in Hybrid Energy Storage System |
| URI | https://ieeexplore.ieee.org/document/10740389 https://www.proquest.com/docview/3188121342 |
| Volume | 72 |
| WOSCitedRecordID | wos001346681900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1557-9948 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014515 issn: 0278-0046 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NS8MwFMCDGx704OfE6ZR38OKhW5tmbXIcc0NBpsiU3UqSpnOgnWyd0Jt_uvnoZCAevPXQlpL3-j6S934PoSvCaZZ1sVZeEqWe8XieiGXoaV9vhqhyziyO4eU-Ho3oZMIeq2Z12wujlLLFZ6ptLu1ZfjqXK7NV1jHFgwYIV0O1OI5cs9bPkQHpunEF2CBjdda3PpP0WWd8N9CZICZt03VKDQFywwfZoSq_LLF1L8P9f37YAdqr4kjoOcEfoi2VH6HdDbrgMfpy7MwSbgwQws1OggfDNdZRJvSsoYO-K1WHilJbgijBlhEAhydlsarS7iBCRWKdQu9tOl_Mitd3mOVwW5qWLxjYFkL9Fq1RUwWOg95Az8PBuH_rVQMXPIlJt9DeKgu7PKU-11mIjAMugljEWAaKSoPdJ1EWhSlOMRM8CgRh2r1LHvAszQRnRIUnqJ7Pc3WKgAaKCV9yFQlChNRRUUBE7HPJJZV-xproei2C5MNxNRKbj_gs0eJKjLiSSlxN1DBLvnGfW-0maq2FllR_3jLRNopaTB0---Oxc7SDzRBfW7XYQvVisVIXaFt-FrPl4tIq1TcxFsvI |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8NAEIAHrYJ68FmxPufgxUNqst089li0pWKtIlW8hd3Npha0lT6E3vzp7iOVgnjwlkMSws5kHrsz3wCcU57keUi08tIo84zH80Qsa5729WaIKufM4hie23Gnk7y8sIeiWd32wiilbPGZqppLe5afDeXUbJVdmuJBA4RbhpWQUuK7dq2fQwMauoEFxEBjdd43P5X02WX3pqFzQUKrpu80MQzIBS9kx6r8ssXWwTS3_vlp27BZRJJYd6LfgSU12IWNBb7gHnw5euYMrw0Swk1PwntDNtZxJtatqcMrV6yOBad2hmKGtpAAOT4qC1aVdg8RCxZrD-tvveGoP3l9x_4AWzPT9IUN20So36J1qqfQkdDL8NRsdK9aXjFywZOEhhPtr_JayLPE5zoPkXHARRCLmMhAJdKA92mUR7WMZIQJHgWCMu3gJQ94nuWCM6pq-1AaDAfqADAJFBO-5CoSlAqp46KAitjnkstE-jmrwMVcBOmHI2ukNiPxWarFlRpxpYW4KlA2S75wn1vtChzPhZYW_9441VYqsaA6cvjHY2ew1uretdP2Tef2CNaJGelraxiPoTQZTdUJrMrPSX88OrUK9g3xE88P |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Battery+Degradation+Oriented+Active+Control+Strategy+by+Using+a+Reinforcement+Learning+Algorithm+in+Hybrid+Energy+Storage+System&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Lin%2C+Xinyou&rft.au=Huang%2C+Hao&rft.au=Xu%2C+Xinhao&rft.date=2025-05-01&rft.pub=IEEE&rft.issn=0278-0046&rft.volume=72&rft.issue=5&rft.spage=4922&rft.epage=4932&rft_id=info:doi/10.1109%2FTIE.2024.3481880&rft.externalDocID=10740389 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |