Turning Adversity Into Advantage: Robust MCS Selection Utilizing the Uncertainty of Channel Prediction Neural Networks

In wireless communication systems, the selection of suitable modulation and/or coding schemes (MCS) based on predicted channel quality is vital. However, the dynamic nature of wireless channels poses a challenge, leading to persistent inaccuracies in prediction. This letter tackles this challenge by...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE wireless communications letters Ročník 13; číslo 10; s. 2632 - 2636
Hlavní autoři: Li, Yangyang, Xu, Yuhua, Li, Guoxin, Wang, Ximing, Xu, Yifan, Liu, Songyi, Yue, Lei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.10.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2162-2337, 2162-2345
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In wireless communication systems, the selection of suitable modulation and/or coding schemes (MCS) based on predicted channel quality is vital. However, the dynamic nature of wireless channels poses a challenge, leading to persistent inaccuracies in prediction. This letter tackles this challenge by introducing a robust communication approach for MCS selection, rooted in new paradigm of prediction uncertainty quantification. The proposed method involves establishing an uncertainty pool to quantify potential prediction errors. This approach enables the assessment of the accuracy of predictions, facilitating the informed selection of MCSs. Through simulations utilizing real-world data, the integration of our proposed design into various channel prediction neural networks enhances the performance of MCS selection. The simulations show our design enhances communication robustness without compromising throughput. The enhancement of up to 53% in communication success rates, with an average improvement of around 15%.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2162-2337
2162-2345
DOI:10.1109/LWC.2024.3393939