Collaborative Optimization Framework for the Industrial Thickening-Dewatering Process Based on Mixed Integer Linear Programming

Reducing the economic expenditure on electricity in the thickening-dewatering process is a viable approach to enhancing production efficiency and minimizing energy consumption. However, limited research has been conducted on co-optimization strategies for this process thus far. To address this gap a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on instrumentation and measurement Vol. 72; p. 1
Main Authors: Zhang, Shulei, Jia, Runda, Pan, Hengxin, He, Dakuo, Li, Kang
Format: Journal Article
Language:English
Published: New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9456, 1557-9662
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Reducing the economic expenditure on electricity in the thickening-dewatering process is a viable approach to enhancing production efficiency and minimizing energy consumption. However, limited research has been conducted on co-optimization strategies for this process thus far. To address this gap and decrease the energy-economic index (EEI) in the thickening-dewatering process, this work introduces a collaborative optimization framework. This work begins by developing a process model capable of simulating the thickening-dewatering process, thereby addressing the issue of insufficient on-site production data. Leveraging the operational data generated by the process model, data-driven predictive models are constructed to facilitate the formulation of an explicit optimization model. Subsequently, a continuous-time mixed integer linear programming (MILP) problem is established to optimize the process, with the objective of minimizing the EEI while accounting for process safety and electricity price constraints. Finally, the collaborative optimization framework is applied to a gold hydrometallurgy plant, yielding significant improvements. The process achieves a 58.67% reduction in EEI compared to manual operations, alongside a 53.62% reduction in equipment operation time.
AbstractList Reducing the economic expenditure on electricity in the thickening-dewatering process is a viable approach to enhancing production efficiency and minimizing energy consumption. However, limited research has been conducted on co-optimization strategies for this process thus far. To address this gap and decrease the energy-economic index (EEI) in the thickening-dewatering process, this work introduces a collaborative optimization framework. This work begins by developing a process model capable of simulating the thickening-dewatering process, thereby addressing the issue of insufficient on-site production data. Leveraging the operational data generated by the process model, data-driven predictive models are constructed to facilitate the formulation of an explicit optimization model. Subsequently, a continuous-time mixed integer linear programming (MILP) problem is established to optimize the process, with the objective of minimizing the EEI while accounting for process safety and electricity price constraints. Finally, the collaborative optimization framework is applied to a gold hydrometallurgy plant, yielding significant improvements. The process achieves a 58.67% reduction in EEI compared to manual operations, alongside a 53.62% reduction in equipment operation time.
Reducing the economic expenditure on electricity in the thickening–dewatering process is a viable approach to enhancing production efficiency and minimizing energy consumption. However, limited research has been conducted on co-optimization strategies for this process thus far. To address this gap and decrease the energy economic index (EEI) in the thickening–dewatering process, this work introduces a collaborative optimization framework. This work begins by developing a process model capable of simulating the thickening–dewatering process, thereby addressing the issue of insufficient ON-site production data. Leveraging the operational data generated by the process model, data-driven predictive models are constructed to facilitate the formulation of an explicit optimization model. Subsequently, a continuous-time mixed integer linear programming (MILP) problem is established to optimize the process, with the objective of minimizing the EEI while accounting for process safety and electricity price constraints. Finally, the collaborative optimization framework is applied to a gold hydrometallurgy plant, yielding significant improvements. The process achieves a 58.67% reduction in EEI compared with manual operations, alongside a 53.62% reduction in equipment operation time.
Author Zhang, Shulei
He, Dakuo
Li, Kang
Pan, Hengxin
Jia, Runda
Author_xml – sequence: 1
  givenname: Shulei
  orcidid: 0000-0002-0187-8267
  surname: Zhang
  fullname: Zhang, Shulei
  organization: College of Information Science and Engineering, Northeastern University, Shenyang, China
– sequence: 2
  givenname: Runda
  orcidid: 0000-0002-8586-243X
  surname: Jia
  fullname: Jia, Runda
  organization: College of Information Science and Engineering, Northeastern University, Shenyang, China
– sequence: 3
  givenname: Hengxin
  orcidid: 0009-0003-9446-4841
  surname: Pan
  fullname: Pan, Hengxin
  organization: College of Information Science and Engineering, Northeastern University, Shenyang, China
– sequence: 4
  givenname: Dakuo
  orcidid: 0000-0001-8303-529X
  surname: He
  fullname: He, Dakuo
  organization: College of Information Science and Engineering, Northeastern University, Shenyang, China
– sequence: 5
  givenname: Kang
  orcidid: 0000-0003-1867-3919
  surname: Li
  fullname: Li, Kang
  organization: State (Beijing) Key Laboratory of Process Automation in Mining & Metallurgy, Beijing, China
BookMark eNpNkD1PwzAQhi0EEuVjZ2CwxJxyduzYGaFQqFQEQ5kj41yKobWLnfK18NdxVQamu5Oe9z3pOSC7Pngk5ITBkDGoz2eTuyEHXg7LEmRVwQ4ZMClVUVcV3yUDAKaLWshqnxyk9AIAqhJqQH5GYbEwTyGa3r0jvV_1bum-8xE8HUezxI8QX2kXIu2fkU58u059dGZBZ8_OvqJ3fl5c4YfpMeaVPsRgMSV6aRK2NHfcuc-8THyPc4x06jyauKHmuXuZE0dkrzOLhMd_85A8jq9no9tien8zGV1MC8uF7AspNQrQpjYtPAmNWHWq4iWANdKUdStRGyW5ta3qrOBMdLY0RnGrQLdW2vKQnG17VzG8rTH1zUtYR59fNlxLrQTL3jIFW8rGkFLErllFtzTxq2HQbDQ3WXOz0dz8ac6R023EIeI_nHNgQpe_Urh9Uw
CODEN IEIMAO
Cites_doi 10.1109/JAS.2022.105464
10.1021/ie020923y
10.1016/j.mineng.2017.01.011
10.1016/j.cherd.2021.07.013
10.1016/j.mineng.2019.106141
10.1109/TII.2019.2953275
10.1109/TII.2022.3217535
10.1016/j.tcs.2017.03.021
10.1016/j.isatra.2021.11.004
10.1016/j.jclepro.2013.12.024
10.1080/00207543.2017.1401236
10.1021/acs.iecr.1c03886
10.1016/j.cej.2005.02.007
10.1016/j.conengprac.2023.105557
10.1007/s10479-015-2003-5
10.1016/j.compchemeng.2020.106943
10.1007/978-3-642-00296-0_5
10.1109/TII.2021.3067447
10.1109/TNNLS.2020.3017461
10.1109/TASE.2020.3043393
10.1016/j.compchemeng.2012.02.016
10.1002/cjce.23886
10.1016/j.solener.2023.04.051
10.1016/j.mineng.2013.12.011
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2023.3305660
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 1
ExternalDocumentID 10_1109_TIM_2023_3305660
10220148
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62173078; 61873049
  funderid: 10.13039/501100001809
– fundername: Open Foundation of State Key Laboratory of Process Automation in Mining & Metallurgy/Beijing Key Laboratory of Process Automation in Mining & Metallurgy
  grantid: BGRIMMKZSKL-2022-6
– fundername: National Key Research and Development Program of China
  grantid: 2021YFC2902703
  funderid: 10.13039/501100012166
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
5VS
8WZ
A6W
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFJZH
VH1
VJK
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c245t-558e408a9ad0b48ee6f762300ca5a39d5e8a752ccd7fc4214fc3aa72c708dc5c3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001065138900028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 08:29:40 EDT 2025
Sat Nov 29 04:38:38 EST 2025
Wed Aug 27 02:25:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-558e408a9ad0b48ee6f762300ca5a39d5e8a752ccd7fc4214fc3aa72c708dc5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0187-8267
0000-0002-8586-243X
0009-0003-9446-4841
0000-0003-1867-3919
0000-0001-8303-529X
PQID 2858741330
PQPubID 85462
PageCount 1
ParticipantIDs crossref_primary_10_1109_TIM_2023_3305660
proquest_journals_2858741330
ieee_primary_10220148
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref24
ref12
ref23
ref15
ref14
ref20
ref11
ref22
ref10
ref21
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref13
  doi: 10.1109/JAS.2022.105464
– ident: ref17
  doi: 10.1021/ie020923y
– ident: ref5
  doi: 10.1016/j.mineng.2017.01.011
– ident: ref2
  doi: 10.1016/j.cherd.2021.07.013
– ident: ref1
  doi: 10.1016/j.mineng.2019.106141
– ident: ref6
  doi: 10.1109/TII.2019.2953275
– ident: ref12
  doi: 10.1109/TII.2022.3217535
– ident: ref16
  doi: 10.1016/j.tcs.2017.03.021
– ident: ref21
  doi: 10.1016/j.isatra.2021.11.004
– ident: ref15
  doi: 10.1016/j.jclepro.2013.12.024
– ident: ref3
  doi: 10.1080/00207543.2017.1401236
– ident: ref22
  doi: 10.1021/acs.iecr.1c03886
– ident: ref20
  doi: 10.1016/j.cej.2005.02.007
– ident: ref23
  doi: 10.1016/j.conengprac.2023.105557
– ident: ref14
  doi: 10.1007/s10479-015-2003-5
– ident: ref18
  doi: 10.1016/j.compchemeng.2020.106943
– ident: ref24
  doi: 10.1007/978-3-642-00296-0_5
– ident: ref10
  doi: 10.1109/TII.2021.3067447
– ident: ref7
  doi: 10.1109/TNNLS.2020.3017461
– ident: ref9
  doi: 10.1109/TASE.2020.3043393
– ident: ref4
  doi: 10.1016/j.compchemeng.2012.02.016
– ident: ref8
  doi: 10.1002/cjce.23886
– ident: ref11
  doi: 10.1016/j.solener.2023.04.051
– ident: ref19
  doi: 10.1016/j.mineng.2013.12.011
SSID ssj0007647
Score 2.3751786
Snippet Reducing the economic expenditure on electricity in the thickening-dewatering process is a viable approach to enhancing production efficiency and minimizing...
Reducing the economic expenditure on electricity in the thickening–dewatering process is a viable approach to enhancing production efficiency and minimizing...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms batch process
Collaboration
Collaborative optimization
Electricity pricing
Energy consumption
Energy economics
Hydrometallurgy
Integer programming
ladder electricity prices
Linear programming
Mixed integer
mixed-integer linear programming
Optimization
Optimization models
Prediction models
Predictive models
Process control
Production
Reduction
Slurries
Task analysis
Thickening
thickening-dewatering process
Title Collaborative Optimization Framework for the Industrial Thickening-Dewatering Process Based on Mixed Integer Linear Programming
URI https://ieeexplore.ieee.org/document/10220148
https://www.proquest.com/docview/2858741330
Volume 72
WOSCitedRecordID wos001065138900028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB4BAgkOLU81LUU-cOGwwdm1195jSxuBxOsQJG4rMx5DDglVEqC3_vWOvZsGCXHozQd7ZPnzjGfG8wA4pBB0IIlZUL1ooBifWYcsDIPyyHfIyJBK5p-by0t7e1tdt8nqKReGiFLwGXXjMP3l-0d8iq6y42idRA_YMiwbUzbJWv_ErilVUyCzxxzMasH8T1JWx4Ozi25sE94tosKcqlEu3qDUVOWNJE7PS__jf25sEz60eqT41gC_BUs03oaNV9UFt2EtRXfidAf-nCzQfiZxxWJi1OZfiv48Okuw-ipYHRSLbh5i8DBkLo-uk-wHvbhZoiza5ALxnV9AL5jGxfA3D6Jz8Z4mgs1bZp84K0Z-jXjFLtz0fw5OTrO280KGudKzTGtLSlpXOS_vlCUqAwvNQkp02hWV12Sd0TmiNwFV3lMBC-dMjkZajxqLPVgZP47pE4gCqSixQMY-FSe0unTMmV6RzgNLlA4czbGofzUFNupkmMiqZtzqiFvd4taB3Xj2r-Y1x96B_Tl6dcuC0zq32rK6xEs_v7PsC6xH6o1DZR9WZpMn-gqr-DwbTicH6Xb9BaTYzzs
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB61QEU50PJSA7T1gQuHDc6unfUeeUWgJimHIHFbmfEYciCgJNDe-tc79m4IEuLAzQfbu_LneXoeAHvkvfYkMfGqFQyU3CXGIjNDrxzyHcqljyXzu3m_b66uios6WT3mwhBRDD6jZhjGt3x3j4_BVXYQrJPgAfsIi1qpVFbpWs-MN2-rqkRmi2mYFYPZq6QsDgbnvWZoFN7Mgsoc61HOpVBsq_KKF0cB0_nyzl_7Cqu1JikOK-jX4AON1mHlRX3BdfgU4ztxsgH_jud4P5H4zYzirs7AFJ1ZfJZgBVawQijm_TzE4HbIdB6cJ8kJ_bHTuLOo0wvEEctAJ3iP3vAvD4J78YbGgg1cJqAwK8R-3fGKTbjsnA6Oz5K690KCqdLTRGtDShpbWCevlSFqe2abmZRotc0Kp8nYXKeILveo0pbymFmbp5hL41BjtgULo_sRfQORIWVtzJDRj-UJjW5bpk2nSKeeeUoD9mdYlA9ViY0ymiayKBm3MuBW1rg1YDOc_Yt51bE3YHeGXlkT4aRMjTasMPHS7TeW_YTls0GvW3bP-7924HP4UuVe2YWF6fiRvsMSPk2Hk_GPeNP-A5Pp0oI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collaborative+Optimization+Framework+for+the+Industrial+Thickening%E2%80%93Dewatering+Process+Based+on+Mixed+Integer+Linear+Programming&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Zhang%2C+Shulei&rft.au=Jia%2C+Runda&rft.au=Pan%2C+Hengxin&rft.au=He%2C+Dakuo&rft.date=2023-01-01&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=72&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTIM.2023.3305660&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2023_3305660
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon