Collaborative Optimization Framework for the Industrial Thickening-Dewatering Process Based on Mixed Integer Linear Programming
Reducing the economic expenditure on electricity in the thickening-dewatering process is a viable approach to enhancing production efficiency and minimizing energy consumption. However, limited research has been conducted on co-optimization strategies for this process thus far. To address this gap a...
Saved in:
| Published in: | IEEE transactions on instrumentation and measurement Vol. 72; p. 1 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9456, 1557-9662 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Reducing the economic expenditure on electricity in the thickening-dewatering process is a viable approach to enhancing production efficiency and minimizing energy consumption. However, limited research has been conducted on co-optimization strategies for this process thus far. To address this gap and decrease the energy-economic index (EEI) in the thickening-dewatering process, this work introduces a collaborative optimization framework. This work begins by developing a process model capable of simulating the thickening-dewatering process, thereby addressing the issue of insufficient on-site production data. Leveraging the operational data generated by the process model, data-driven predictive models are constructed to facilitate the formulation of an explicit optimization model. Subsequently, a continuous-time mixed integer linear programming (MILP) problem is established to optimize the process, with the objective of minimizing the EEI while accounting for process safety and electricity price constraints. Finally, the collaborative optimization framework is applied to a gold hydrometallurgy plant, yielding significant improvements. The process achieves a 58.67% reduction in EEI compared to manual operations, alongside a 53.62% reduction in equipment operation time. |
|---|---|
| AbstractList | Reducing the economic expenditure on electricity in the thickening-dewatering process is a viable approach to enhancing production efficiency and minimizing energy consumption. However, limited research has been conducted on co-optimization strategies for this process thus far. To address this gap and decrease the energy-economic index (EEI) in the thickening-dewatering process, this work introduces a collaborative optimization framework. This work begins by developing a process model capable of simulating the thickening-dewatering process, thereby addressing the issue of insufficient on-site production data. Leveraging the operational data generated by the process model, data-driven predictive models are constructed to facilitate the formulation of an explicit optimization model. Subsequently, a continuous-time mixed integer linear programming (MILP) problem is established to optimize the process, with the objective of minimizing the EEI while accounting for process safety and electricity price constraints. Finally, the collaborative optimization framework is applied to a gold hydrometallurgy plant, yielding significant improvements. The process achieves a 58.67% reduction in EEI compared to manual operations, alongside a 53.62% reduction in equipment operation time. Reducing the economic expenditure on electricity in the thickening–dewatering process is a viable approach to enhancing production efficiency and minimizing energy consumption. However, limited research has been conducted on co-optimization strategies for this process thus far. To address this gap and decrease the energy economic index (EEI) in the thickening–dewatering process, this work introduces a collaborative optimization framework. This work begins by developing a process model capable of simulating the thickening–dewatering process, thereby addressing the issue of insufficient ON-site production data. Leveraging the operational data generated by the process model, data-driven predictive models are constructed to facilitate the formulation of an explicit optimization model. Subsequently, a continuous-time mixed integer linear programming (MILP) problem is established to optimize the process, with the objective of minimizing the EEI while accounting for process safety and electricity price constraints. Finally, the collaborative optimization framework is applied to a gold hydrometallurgy plant, yielding significant improvements. The process achieves a 58.67% reduction in EEI compared with manual operations, alongside a 53.62% reduction in equipment operation time. |
| Author | Zhang, Shulei He, Dakuo Li, Kang Pan, Hengxin Jia, Runda |
| Author_xml | – sequence: 1 givenname: Shulei orcidid: 0000-0002-0187-8267 surname: Zhang fullname: Zhang, Shulei organization: College of Information Science and Engineering, Northeastern University, Shenyang, China – sequence: 2 givenname: Runda orcidid: 0000-0002-8586-243X surname: Jia fullname: Jia, Runda organization: College of Information Science and Engineering, Northeastern University, Shenyang, China – sequence: 3 givenname: Hengxin orcidid: 0009-0003-9446-4841 surname: Pan fullname: Pan, Hengxin organization: College of Information Science and Engineering, Northeastern University, Shenyang, China – sequence: 4 givenname: Dakuo orcidid: 0000-0001-8303-529X surname: He fullname: He, Dakuo organization: College of Information Science and Engineering, Northeastern University, Shenyang, China – sequence: 5 givenname: Kang orcidid: 0000-0003-1867-3919 surname: Li fullname: Li, Kang organization: State (Beijing) Key Laboratory of Process Automation in Mining & Metallurgy, Beijing, China |
| BookMark | eNpNkD1PwzAQhi0EEuVjZ2CwxJxyduzYGaFQqFQEQ5kj41yKobWLnfK18NdxVQamu5Oe9z3pOSC7Pngk5ITBkDGoz2eTuyEHXg7LEmRVwQ4ZMClVUVcV3yUDAKaLWshqnxyk9AIAqhJqQH5GYbEwTyGa3r0jvV_1bum-8xE8HUezxI8QX2kXIu2fkU58u059dGZBZ8_OvqJ3fl5c4YfpMeaVPsRgMSV6aRK2NHfcuc-8THyPc4x06jyauKHmuXuZE0dkrzOLhMd_85A8jq9no9tien8zGV1MC8uF7AspNQrQpjYtPAmNWHWq4iWANdKUdStRGyW5ta3qrOBMdLY0RnGrQLdW2vKQnG17VzG8rTH1zUtYR59fNlxLrQTL3jIFW8rGkFLErllFtzTxq2HQbDQ3WXOz0dz8ac6R023EIeI_nHNgQpe_Urh9Uw |
| CODEN | IEIMAO |
| Cites_doi | 10.1109/JAS.2022.105464 10.1021/ie020923y 10.1016/j.mineng.2017.01.011 10.1016/j.cherd.2021.07.013 10.1016/j.mineng.2019.106141 10.1109/TII.2019.2953275 10.1109/TII.2022.3217535 10.1016/j.tcs.2017.03.021 10.1016/j.isatra.2021.11.004 10.1016/j.jclepro.2013.12.024 10.1080/00207543.2017.1401236 10.1021/acs.iecr.1c03886 10.1016/j.cej.2005.02.007 10.1016/j.conengprac.2023.105557 10.1007/s10479-015-2003-5 10.1016/j.compchemeng.2020.106943 10.1007/978-3-642-00296-0_5 10.1109/TII.2021.3067447 10.1109/TNNLS.2020.3017461 10.1109/TASE.2020.3043393 10.1016/j.compchemeng.2012.02.016 10.1002/cjce.23886 10.1016/j.solener.2023.04.051 10.1016/j.mineng.2013.12.011 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2023.3305660 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TIM_2023_3305660 10220148 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62173078; 61873049 funderid: 10.13039/501100001809 – fundername: Open Foundation of State Key Laboratory of Process Automation in Mining & Metallurgy/Beijing Key Laboratory of Process Automation in Mining & Metallurgy grantid: BGRIMMKZSKL-2022-6 – fundername: National Key Research and Development Program of China grantid: 2021YFC2902703 funderid: 10.13039/501100012166 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ 5VS 8WZ A6W AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IAAWW IBMZZ ICLAB IDIHD IFJZH VH1 VJK 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c245t-558e408a9ad0b48ee6f762300ca5a39d5e8a752ccd7fc4214fc3aa72c708dc5c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001065138900028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 08:29:40 EDT 2025 Sat Nov 29 04:38:38 EST 2025 Wed Aug 27 02:25:59 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c245t-558e408a9ad0b48ee6f762300ca5a39d5e8a752ccd7fc4214fc3aa72c708dc5c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0187-8267 0000-0002-8586-243X 0009-0003-9446-4841 0000-0003-1867-3919 0000-0001-8303-529X |
| PQID | 2858741330 |
| PQPubID | 85462 |
| PageCount | 1 |
| ParticipantIDs | crossref_primary_10_1109_TIM_2023_3305660 proquest_journals_2858741330 ieee_primary_10220148 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref24 ref12 ref23 ref15 ref14 ref20 ref11 ref22 ref10 ref21 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref13 doi: 10.1109/JAS.2022.105464 – ident: ref17 doi: 10.1021/ie020923y – ident: ref5 doi: 10.1016/j.mineng.2017.01.011 – ident: ref2 doi: 10.1016/j.cherd.2021.07.013 – ident: ref1 doi: 10.1016/j.mineng.2019.106141 – ident: ref6 doi: 10.1109/TII.2019.2953275 – ident: ref12 doi: 10.1109/TII.2022.3217535 – ident: ref16 doi: 10.1016/j.tcs.2017.03.021 – ident: ref21 doi: 10.1016/j.isatra.2021.11.004 – ident: ref15 doi: 10.1016/j.jclepro.2013.12.024 – ident: ref3 doi: 10.1080/00207543.2017.1401236 – ident: ref22 doi: 10.1021/acs.iecr.1c03886 – ident: ref20 doi: 10.1016/j.cej.2005.02.007 – ident: ref23 doi: 10.1016/j.conengprac.2023.105557 – ident: ref14 doi: 10.1007/s10479-015-2003-5 – ident: ref18 doi: 10.1016/j.compchemeng.2020.106943 – ident: ref24 doi: 10.1007/978-3-642-00296-0_5 – ident: ref10 doi: 10.1109/TII.2021.3067447 – ident: ref7 doi: 10.1109/TNNLS.2020.3017461 – ident: ref9 doi: 10.1109/TASE.2020.3043393 – ident: ref4 doi: 10.1016/j.compchemeng.2012.02.016 – ident: ref8 doi: 10.1002/cjce.23886 – ident: ref11 doi: 10.1016/j.solener.2023.04.051 – ident: ref19 doi: 10.1016/j.mineng.2013.12.011 |
| SSID | ssj0007647 |
| Score | 2.3751786 |
| Snippet | Reducing the economic expenditure on electricity in the thickening-dewatering process is a viable approach to enhancing production efficiency and minimizing... Reducing the economic expenditure on electricity in the thickening–dewatering process is a viable approach to enhancing production efficiency and minimizing... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | batch process Collaboration Collaborative optimization Electricity pricing Energy consumption Energy economics Hydrometallurgy Integer programming ladder electricity prices Linear programming Mixed integer mixed-integer linear programming Optimization Optimization models Prediction models Predictive models Process control Production Reduction Slurries Task analysis Thickening thickening-dewatering process |
| Title | Collaborative Optimization Framework for the Industrial Thickening-Dewatering Process Based on Mixed Integer Linear Programming |
| URI | https://ieeexplore.ieee.org/document/10220148 https://www.proquest.com/docview/2858741330 |
| Volume | 72 |
| WOSCitedRecordID | wos001065138900028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB4BAgkOLU81LUU-cOGwwdm1195jSxuBxOsQJG4rMx5DDglVEqC3_vWOvZsGCXHozQd7ZPnzjGfG8wA4pBB0IIlZUL1ooBifWYcsDIPyyHfIyJBK5p-by0t7e1tdt8nqKReGiFLwGXXjMP3l-0d8iq6y42idRA_YMiwbUzbJWv_ErilVUyCzxxzMasH8T1JWx4Ozi25sE94tosKcqlEu3qDUVOWNJE7PS__jf25sEz60eqT41gC_BUs03oaNV9UFt2EtRXfidAf-nCzQfiZxxWJi1OZfiv48Okuw-ipYHRSLbh5i8DBkLo-uk-wHvbhZoiza5ALxnV9AL5jGxfA3D6Jz8Z4mgs1bZp84K0Z-jXjFLtz0fw5OTrO280KGudKzTGtLSlpXOS_vlCUqAwvNQkp02hWV12Sd0TmiNwFV3lMBC-dMjkZajxqLPVgZP47pE4gCqSixQMY-FSe0unTMmV6RzgNLlA4czbGofzUFNupkmMiqZtzqiFvd4taB3Xj2r-Y1x96B_Tl6dcuC0zq32rK6xEs_v7PsC6xH6o1DZR9WZpMn-gqr-DwbTicH6Xb9BaTYzzs |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB61QEU50PJSA7T1gQuHDc6unfUeeUWgJimHIHFbmfEYciCgJNDe-tc79m4IEuLAzQfbu_LneXoeAHvkvfYkMfGqFQyU3CXGIjNDrxzyHcqljyXzu3m_b66uios6WT3mwhBRDD6jZhjGt3x3j4_BVXYQrJPgAfsIi1qpVFbpWs-MN2-rqkRmi2mYFYPZq6QsDgbnvWZoFN7Mgsoc61HOpVBsq_KKF0cB0_nyzl_7Cqu1JikOK-jX4AON1mHlRX3BdfgU4ztxsgH_jud4P5H4zYzirs7AFJ1ZfJZgBVawQijm_TzE4HbIdB6cJ8kJ_bHTuLOo0wvEEctAJ3iP3vAvD4J78YbGgg1cJqAwK8R-3fGKTbjsnA6Oz5K690KCqdLTRGtDShpbWCevlSFqe2abmZRotc0Kp8nYXKeILveo0pbymFmbp5hL41BjtgULo_sRfQORIWVtzJDRj-UJjW5bpk2nSKeeeUoD9mdYlA9ViY0ymiayKBm3MuBW1rg1YDOc_Yt51bE3YHeGXlkT4aRMjTasMPHS7TeW_YTls0GvW3bP-7924HP4UuVe2YWF6fiRvsMSPk2Hk_GPeNP-A5Pp0oI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collaborative+Optimization+Framework+for+the+Industrial+Thickening%E2%80%93Dewatering+Process+Based+on+Mixed+Integer+Linear+Programming&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Zhang%2C+Shulei&rft.au=Jia%2C+Runda&rft.au=Pan%2C+Hengxin&rft.au=He%2C+Dakuo&rft.date=2023-01-01&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=72&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTIM.2023.3305660&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2023_3305660 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |