Computing Optimal Joint Chance Constrained Control Policies
We consider the problem of optimally controlling stochastic, Markovian systems subject to joint chance constraints over a finite-time horizon. For such problems, standard dynamic programming is inapplicable due to the time correlation of the joint chance constraints, which calls for non-Markovian, a...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on automatic control Jg. 70; H. 7; S. 4904 - 4911 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.07.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9286, 1558-2523 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We consider the problem of optimally controlling stochastic, Markovian systems subject to joint chance constraints over a finite-time horizon. For such problems, standard dynamic programming is inapplicable due to the time correlation of the joint chance constraints, which calls for non-Markovian, and possibly stochastic, policies. Hence, despite the popularity of this problem, solution approaches capable of providing provably optimal and easy-to-compute policies are still missing. We fill this gap by augmenting the dynamics via a binary state, allowing us to characterize the optimal policies and develop a dynamic programming-based solution method. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9286 1558-2523 |
| DOI: | 10.1109/TAC.2025.3546078 |