Editorial for the special issue on high performance distributed computing

With the advent of the Big Data era, the demand for storing, processing, and analyzing this vast and growing amount of data has emerged in the market. Since a single node cannot cope with its complexity requirements, high-performance systems typically operate in a distributed environment. [...]the d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CCF transactions on high performance computing (Online) Jg. 3; H. 2; S. 127 - 128
Hauptverfasser: Guo, Minyi, Chen, Guihai, Liao, Xiaofei, Zheng, Long
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Singapore Springer Singapore 01.06.2021
Springer Nature B.V
Schlagworte:
ISSN:2524-4922, 2524-4930
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the advent of the Big Data era, the demand for storing, processing, and analyzing this vast and growing amount of data has emerged in the market. Since a single node cannot cope with its complexity requirements, high-performance systems typically operate in a distributed environment. [...]the diverse development of hardware platforms, the spurt of data growth, and the rapid changes in applications are increasingly challenging resource management, energy efficiency, performance tuning, scalability, and fault tolerance. The paper written by Qiang Qi et al. proposes a network bandwidth resource allocation strategy for distributed deep neural network (DNN) training tasks to mitigate the network resource contention and alleviate the performance variation of training jobs.
Bibliographie:SourceType-Scholarly Journals-1
content type line 14
ObjectType-Editorial-2
ObjectType-Commentary-1
ISSN:2524-4922
2524-4930
DOI:10.1007/s42514-021-00068-7