Stochastic Augmented Projected Gradient Methods for the Large-Scale Precoding Matrix Indicator Selection Problem
In this paper, we consider the large-scale precoding matrix indicator (PMI) selection problem at the receiver in wireless communications. The selection is based on the channel capacity of the PMI matrix in a pre-designed codebook. The quality of the PMI matrix is essential in achieving higher spectr...
Uložené v:
| Vydané v: | IEEE transactions on wireless communications Ročník 21; číslo 11; s. 9553 - 9565 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1536-1276, 1558-2248 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this paper, we consider the large-scale precoding matrix indicator (PMI) selection problem at the receiver in wireless communications. The selection is based on the channel capacity of the PMI matrix in a pre-designed codebook. The quality of the PMI matrix is essential in achieving higher spectral efficiency. We first derive two novel formulations including a partial permutation-matrix model and an indicator-vector model for the original problem. The discrete constraints in the formulations make the problem NP-hard. Then we propose a stochastic projected gradient method augmented by block coordinate descent under various strategies. We show that the algorithms terminate in finite steps and produce sufficient descent at each iteration when the step size is chosen properly. Extensive experiments demonstrate that our proposed algorithms are able to find better PMI matrices more efficiently compared to the existing methods. |
|---|---|
| AbstractList | In this paper, we consider the large-scale precoding matrix indicator (PMI) selection problem at the receiver in wireless communications. The selection is based on the channel capacity of the PMI matrix in a pre-designed codebook. The quality of the PMI matrix is essential in achieving higher spectral efficiency. We first derive two novel formulations including a partial permutation-matrix model and an indicator-vector model for the original problem. The discrete constraints in the formulations make the problem NP-hard. Then we propose a stochastic projected gradient method augmented by block coordinate descent under various strategies. We show that the algorithms terminate in finite steps and produce sufficient descent at each iteration when the step size is chosen properly. Extensive experiments demonstrate that our proposed algorithms are able to find better PMI matrices more efficiently compared to the existing methods. |
| Author | Zhang, Jiaqi Jiang, Bo Jin, Zeyu Wen, Zaiwen |
| Author_xml | – sequence: 1 givenname: Jiaqi orcidid: 0000-0001-9039-6843 surname: Zhang fullname: Zhang, Jiaqi email: viczhang@mit.edu organization: Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA – sequence: 2 givenname: Zeyu surname: Jin fullname: Jin, Zeyu email: 1801210096@pku.edu.cn organization: School of Mathematical Sciences, Peking University, Beijing, China – sequence: 3 givenname: Bo orcidid: 0000-0001-8232-4604 surname: Jiang fullname: Jiang, Bo email: jiangbo@njnu.edu.cn organization: Key Laboratory for NSLSCS of Jiangsu Province, School of Mathematical Sciences, Nanjing Normal University, Nanjing, China – sequence: 4 givenname: Zaiwen orcidid: 0000-0003-1762-0671 surname: Wen fullname: Wen, Zaiwen email: wenzw@pku.edu.cn organization: Beijing International Center for Mathematical Research, College of Engineering and International Center for Machine Learning Research, Peking University, Beijing, China |
| BookMark | eNo9kM1rAjEQxUOxULW9F3pZ6HltPjZu9ijSWkFpQaHHkE1mNbJubBKh_e-bRelpHjO_9wbeCA061wFCjwRPCMHVy_ZrPqGY0gkjZSkKfIOGhHORU1qIQa_ZNCe0nN6hUQgHjEk55XyITpvo9F6FaHU2O--O0EUw2ad3B9C9WnhlbFpma4h7Z0LWOJ_FPWQr5XeQb7RqIeGgnbHdLlur6O1PtuyM1SomdANtCrKu6zPrFo736LZRbYCH6xyj7dvrdv6erz4Wy_lslWtaFDFnNamMIAYzXje04EQRTKtGGK1qDoVpNDRVNRVGgWHECK6YqYrE1jU1WLExer7Enrz7PkOI8uDOvksfJS0ZZ4IQhhOFL5T2LgQPjTx5e1T-VxIs-1plqlX2tcprrcnydLFYAPjHq1KULF3_AH-Od0E |
| CODEN | ITWCAX |
| Cites_doi | 10.1007/978-3-7908-2604-3_16 10.1007/s10107-013-0701-9 10.1109/4234.917094 10.1109/TSP.2021.3102106 10.1109/TIT.2005.850152 10.1007/978-3-319-91578-4 10.1137/20M1346912 10.1109/VTCFall.2016.7881075 10.1007/s10107-012-0584-1 10.1007/s00245-019-09564-3 10.1007/978-3-540-88906-9_18 10.1137/17M1141904 10.1093/imanum/8.1.141 10.1109/WIAD.2010.5544947 10.1007/BF02278710 10.1137/1.9781611974973.52 10.1515/9780691187563 10.1007/978-3-642-35289-8_25 10.1137/S1052623403428208 10.1137/15M1048021 10.1109/WSA.2010.5456388 10.1109/VTCSpring.2013.6691823 10.1007/s10915-017-0376-0 10.1023/A:1017501703105 10.1137/0105003 10.1007/s00186-019-00673-x 10.1137/050637467 10.1109/TIT.2011.2112070 10.1007/s10107-022-01794-8 10.1109/VETECS.2010.5493709 10.1109/SPAWC.2017.8227768 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TWC.2022.3177840 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2248 |
| EndPage | 9565 |
| ExternalDocumentID | 10_1109_TWC_2022_3177840 9787340 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: NSFC grantid: 11971239; 11831002 funderid: 10.13039/501100001809 – fundername: Beijing Academy of Artificial Intelligence and Natural Science Foundation of the Higher Education Institutions of Jiangsu Province grantid: 21KJA110002 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IES IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c244t-3b19d81d035bf2451a1029f8dcab5e4dfcef9968daed31d85a3d945bfbb2d0a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000882003900049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1536-1276 |
| IngestDate | Fri Jul 25 18:55:55 EDT 2025 Sat Nov 29 06:23:54 EST 2025 Wed Aug 27 02:18:46 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c244t-3b19d81d035bf2451a1029f8dcab5e4dfcef9968daed31d85a3d945bfbb2d0a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8232-4604 0000-0001-9039-6843 0000-0003-1762-0671 |
| PQID | 2735381130 |
| PQPubID | 105736 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1109_TWC_2022_3177840 ieee_primary_9787340 proquest_journals_2735381130 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Nov. 2022-11-00 20221101 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-Nov. |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on wireless communications |
| PublicationTitleAbbrev | TWC |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 cui (ref1) 2012 ref34 ref37 ref15 fu (ref8) 2012; 35 ref36 ref31 ref30 ref33 ref11 ref32 ref10 dostl (ref12) 2009 ref39 ref17 ref16 ref19 ref18 buehren (ref21) 2021 (ref2) 2019 wang (ref38) 2021 ref24 ref23 ref26 ref25 ref20 ref22 ref28 ref27 huang (ref29) 2020 ref7 ref9 ref4 ref3 ref6 ref5 lee (ref14) 2001; 13 |
| References_xml | – start-page: 10828 year: 2021 ident: ref38 article-title: Optimal non-convex exact recovery in stochastic block model via projected power method publication-title: Proc Int Conf Mach Learn – ident: ref33 doi: 10.1007/978-3-7908-2604-3_16 – ident: ref24 doi: 10.1007/s10107-013-0701-9 – ident: ref6 doi: 10.1109/4234.917094 – ident: ref16 doi: 10.1109/TSP.2021.3102106 – ident: ref3 doi: 10.1109/TIT.2005.850152 – ident: ref28 doi: 10.1007/978-3-319-91578-4 – ident: ref37 doi: 10.1137/20M1346912 – ident: ref9 doi: 10.1109/VTCFall.2016.7881075 – ident: ref19 doi: 10.1007/s10107-012-0584-1 – ident: ref20 doi: 10.1007/s00245-019-09564-3 – year: 2020 ident: ref29 article-title: Alternating direction method of multipliers for quantization publication-title: arXiv 2009 03482 – ident: ref15 doi: 10.1007/978-3-540-88906-9_18 – year: 2019 ident: ref2 publication-title: Physical layer procedures for data – ident: ref39 doi: 10.1137/17M1141904 – ident: ref30 doi: 10.1093/imanum/8.1.141 – ident: ref5 doi: 10.1109/WIAD.2010.5544947 – ident: ref23 doi: 10.1007/BF02278710 – ident: ref26 doi: 10.1137/1.9781611974973.52 – ident: ref35 doi: 10.1515/9780691187563 – ident: ref34 doi: 10.1007/978-3-642-35289-8_25 – volume: 35 start-page: 30 year: 2012 ident: ref8 article-title: A selection algorithm of precoding codebook for TDD LTE publication-title: Journal of Beijing University of Posts and Telecommunicatns – year: 2021 ident: ref21 publication-title: Functions for the Rectangular Assignment Problem – ident: ref31 doi: 10.1137/S1052623403428208 – ident: ref18 doi: 10.1137/15M1048021 – ident: ref4 doi: 10.1109/WSA.2010.5456388 – ident: ref10 doi: 10.1109/VTCSpring.2013.6691823 – year: 2009 ident: ref12 publication-title: Optimal Quadratic Programming Algorithms With Applications to Variational Inequalities – ident: ref25 doi: 10.1007/s10915-017-0376-0 – ident: ref32 doi: 10.1023/A:1017501703105 – volume: 13 start-page: 556 year: 2001 ident: ref14 article-title: Algorithms for non-negative matrix factorization publication-title: Proc Adv Neural Inf Process Syst – ident: ref22 doi: 10.1137/0105003 – ident: ref36 doi: 10.1007/s00186-019-00673-x – start-page: 1 year: 2012 ident: ref1 article-title: Adaption feedback of precoding matrix indicator for 3GPP LTE/LTE-A system publication-title: Proc 4th Int High Speed Intell Commun Forum – ident: ref13 doi: 10.1137/050637467 – ident: ref11 doi: 10.1109/TIT.2011.2112070 – ident: ref17 doi: 10.1007/s10107-022-01794-8 – ident: ref7 doi: 10.1109/VETECS.2010.5493709 – ident: ref27 doi: 10.1109/SPAWC.2017.8227768 |
| SSID | ssj0017655 |
| Score | 2.407731 |
| Snippet | In this paper, we consider the large-scale precoding matrix indicator (PMI) selection problem at the receiver in wireless communications. The selection is... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 9553 |
| SubjectTerms | Algorithms block coordinate descent Channel capacity discrete projected gradient Gradient methods Iterative methods Mathematical analysis Optimization partial permutation Permutations Precoding Precoding matrix indicator STEM stochastic methods Stochastic processes Wireless communication Wireless communications |
| Title | Stochastic Augmented Projected Gradient Methods for the Large-Scale Precoding Matrix Indicator Selection Problem |
| URI | https://ieeexplore.ieee.org/document/9787340 https://www.proquest.com/docview/2735381130 |
| Volume | 21 |
| WOSCitedRecordID | wos000882003900049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2248 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017655 issn: 1536-1276 databaseCode: RIE dateStart: 20020101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVKxQADXwVRKMgDCxKBfDhxPFYVBaS2qtQKukWxfQGWtGpTxM_n7KRRJVjYPDhW5Gf77vl89wi5kZELvvC1Ayb-z6RyHam054QMMiY12nibSPs64KNRPJuJcYPc1bkwAGAfn8G9adpYvp6rtbkqM9VgecCQoO9wHpW5WnXEgEdW4RQ3sNGV4XVI0hUP07ceEkHfR37KeWyuObZMkNVU-XUQW-vSP_zffx2Rg8qLpN0S9mPSgPyE7G_VFmyRxaSYq4_UlGGm3fW7rb2p6bi8eMHW09I-9iro0GpIryh6rxS9QTowb8OdCWIH2B3ZqbFudGhK-X_Tl9zEdZCn04kV0EFUzZhGk-aUTPuP096zU8krOApteuEE0hMa3VU3CGXms9BL0dkQWaxVKkNgOlOQIRuKdQo68BC2NNCCYV8pfe2mwRlp5vMczgnVyDoCD6JYhBnzQQrIXFwEXHJfucBZm9xuJjxZlEU0Eks-XJEgOIkBJ6nAaZOWmeC6XzW3bdLZIJRUu2yVoOuF57WHZvji768uyZ4Zu8wd7JBmsVzDFdlVX8XnanltF9APEy_F1w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6KCurBt1itmoMXwdV9ZJvNsYi1xbYILept2SSz6qUt7Vb8-U6yaxH04i2H7IN8SWa-TGY-gAvV9DGUofHQxv-50r6ntAm8mGPOlSEb7xJpn3piMEheXuRjDa6WuTCI6C6f4bVtuli-meiFPSqz1WBFxImgr8Y8SniZrbWMGYim0zilJWyVZcQyKOnLm9HzLVHBMCSGKkRiDzp-GCGnqvJrK3b2pb39vz_bga3Kj2StEvhdqOF4DzZ_VBfch-mwmOi3zBZiZq3Fq6u-adhjefRCrfuZu-5VsL5TkZ4z8l8Z-YOsZ2-He0NCD6k78VNr31jfFvP_ZN2xjewQU2dDJ6FDuNp3WlWaAxi170a3Ha8SWPA0WfXCi1QgDTmsfhSrPORxkJG7IfPE6EzFyE2uMSc-lJgMTRQQcFlkJKe-SoXGz6JDWBlPxngEzBDviAJsJjLOeYhKYu7TNBBKhNpHwetw-T3g6bQso5E6-uHLlMBJLThpBU4d9u0AL_tVY1uHxjdCabXO5ik5X7RjB2SIj_9-6hzWO6N-L-11Bw8nsGG_U2YSNmClmC3wFNb0R_E-n525yfQFmxzJJw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+Augmented+Projected+Gradient+Methods+for+the+Large-Scale+Precoding+Matrix+Indicator+Selection+Problem&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Zhang%2C+Jiaqi&rft.au=Jin%2C+Zeyu&rft.au=Jiang%2C+Bo&rft.au=Wen%2C+Zaiwen&rft.date=2022-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=21&rft.issue=11&rft.spage=9553&rft_id=info:doi/10.1109%2FTWC.2022.3177840&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon |