Stochastic Augmented Projected Gradient Methods for the Large-Scale Precoding Matrix Indicator Selection Problem

In this paper, we consider the large-scale precoding matrix indicator (PMI) selection problem at the receiver in wireless communications. The selection is based on the channel capacity of the PMI matrix in a pre-designed codebook. The quality of the PMI matrix is essential in achieving higher spectr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on wireless communications Ročník 21; číslo 11; s. 9553 - 9565
Hlavní autori: Zhang, Jiaqi, Jin, Zeyu, Jiang, Bo, Wen, Zaiwen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1536-1276, 1558-2248
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we consider the large-scale precoding matrix indicator (PMI) selection problem at the receiver in wireless communications. The selection is based on the channel capacity of the PMI matrix in a pre-designed codebook. The quality of the PMI matrix is essential in achieving higher spectral efficiency. We first derive two novel formulations including a partial permutation-matrix model and an indicator-vector model for the original problem. The discrete constraints in the formulations make the problem NP-hard. Then we propose a stochastic projected gradient method augmented by block coordinate descent under various strategies. We show that the algorithms terminate in finite steps and produce sufficient descent at each iteration when the step size is chosen properly. Extensive experiments demonstrate that our proposed algorithms are able to find better PMI matrices more efficiently compared to the existing methods.
AbstractList In this paper, we consider the large-scale precoding matrix indicator (PMI) selection problem at the receiver in wireless communications. The selection is based on the channel capacity of the PMI matrix in a pre-designed codebook. The quality of the PMI matrix is essential in achieving higher spectral efficiency. We first derive two novel formulations including a partial permutation-matrix model and an indicator-vector model for the original problem. The discrete constraints in the formulations make the problem NP-hard. Then we propose a stochastic projected gradient method augmented by block coordinate descent under various strategies. We show that the algorithms terminate in finite steps and produce sufficient descent at each iteration when the step size is chosen properly. Extensive experiments demonstrate that our proposed algorithms are able to find better PMI matrices more efficiently compared to the existing methods.
Author Zhang, Jiaqi
Jiang, Bo
Jin, Zeyu
Wen, Zaiwen
Author_xml – sequence: 1
  givenname: Jiaqi
  orcidid: 0000-0001-9039-6843
  surname: Zhang
  fullname: Zhang, Jiaqi
  email: viczhang@mit.edu
  organization: Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
– sequence: 2
  givenname: Zeyu
  surname: Jin
  fullname: Jin, Zeyu
  email: 1801210096@pku.edu.cn
  organization: School of Mathematical Sciences, Peking University, Beijing, China
– sequence: 3
  givenname: Bo
  orcidid: 0000-0001-8232-4604
  surname: Jiang
  fullname: Jiang, Bo
  email: jiangbo@njnu.edu.cn
  organization: Key Laboratory for NSLSCS of Jiangsu Province, School of Mathematical Sciences, Nanjing Normal University, Nanjing, China
– sequence: 4
  givenname: Zaiwen
  orcidid: 0000-0003-1762-0671
  surname: Wen
  fullname: Wen, Zaiwen
  email: wenzw@pku.edu.cn
  organization: Beijing International Center for Mathematical Research, College of Engineering and International Center for Machine Learning Research, Peking University, Beijing, China
BookMark eNo9kM1rAjEQxUOxULW9F3pZ6HltPjZu9ijSWkFpQaHHkE1mNbJubBKh_e-bRelpHjO_9wbeCA061wFCjwRPCMHVy_ZrPqGY0gkjZSkKfIOGhHORU1qIQa_ZNCe0nN6hUQgHjEk55XyITpvo9F6FaHU2O--O0EUw2ad3B9C9WnhlbFpma4h7Z0LWOJ_FPWQr5XeQb7RqIeGgnbHdLlur6O1PtuyM1SomdANtCrKu6zPrFo736LZRbYCH6xyj7dvrdv6erz4Wy_lslWtaFDFnNamMIAYzXje04EQRTKtGGK1qDoVpNDRVNRVGgWHECK6YqYrE1jU1WLExer7Enrz7PkOI8uDOvksfJS0ZZ4IQhhOFL5T2LgQPjTx5e1T-VxIs-1plqlX2tcprrcnydLFYAPjHq1KULF3_AH-Od0E
CODEN ITWCAX
Cites_doi 10.1007/978-3-7908-2604-3_16
10.1007/s10107-013-0701-9
10.1109/4234.917094
10.1109/TSP.2021.3102106
10.1109/TIT.2005.850152
10.1007/978-3-319-91578-4
10.1137/20M1346912
10.1109/VTCFall.2016.7881075
10.1007/s10107-012-0584-1
10.1007/s00245-019-09564-3
10.1007/978-3-540-88906-9_18
10.1137/17M1141904
10.1093/imanum/8.1.141
10.1109/WIAD.2010.5544947
10.1007/BF02278710
10.1137/1.9781611974973.52
10.1515/9780691187563
10.1007/978-3-642-35289-8_25
10.1137/S1052623403428208
10.1137/15M1048021
10.1109/WSA.2010.5456388
10.1109/VTCSpring.2013.6691823
10.1007/s10915-017-0376-0
10.1023/A:1017501703105
10.1137/0105003
10.1007/s00186-019-00673-x
10.1137/050637467
10.1109/TIT.2011.2112070
10.1007/s10107-022-01794-8
10.1109/VETECS.2010.5493709
10.1109/SPAWC.2017.8227768
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TWC.2022.3177840
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2248
EndPage 9565
ExternalDocumentID 10_1109_TWC_2022_3177840
9787340
Genre orig-research
GrantInformation_xml – fundername: NSFC
  grantid: 11971239; 11831002
  funderid: 10.13039/501100001809
– fundername: Beijing Academy of Artificial Intelligence and Natural Science Foundation of the Higher Education Institutions of Jiangsu Province
  grantid: 21KJA110002
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c244t-3b19d81d035bf2451a1029f8dcab5e4dfcef9968daed31d85a3d945bfbb2d0a3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000882003900049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1536-1276
IngestDate Fri Jul 25 18:55:55 EDT 2025
Sat Nov 29 06:23:54 EST 2025
Wed Aug 27 02:18:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c244t-3b19d81d035bf2451a1029f8dcab5e4dfcef9968daed31d85a3d945bfbb2d0a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8232-4604
0000-0001-9039-6843
0000-0003-1762-0671
PQID 2735381130
PQPubID 105736
PageCount 13
ParticipantIDs crossref_primary_10_1109_TWC_2022_3177840
ieee_primary_9787340
proquest_journals_2735381130
PublicationCentury 2000
PublicationDate 2022-Nov.
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-Nov.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on wireless communications
PublicationTitleAbbrev TWC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
cui (ref1) 2012
ref34
ref37
ref15
fu (ref8) 2012; 35
ref36
ref31
ref30
ref33
ref11
ref32
ref10
dostl (ref12) 2009
ref39
ref17
ref16
ref19
ref18
buehren (ref21) 2021
(ref2) 2019
wang (ref38) 2021
ref24
ref23
ref26
ref25
ref20
ref22
ref28
ref27
huang (ref29) 2020
ref7
ref9
ref4
ref3
ref6
ref5
lee (ref14) 2001; 13
References_xml – start-page: 10828
  year: 2021
  ident: ref38
  article-title: Optimal non-convex exact recovery in stochastic block model via projected power method
  publication-title: Proc Int Conf Mach Learn
– ident: ref33
  doi: 10.1007/978-3-7908-2604-3_16
– ident: ref24
  doi: 10.1007/s10107-013-0701-9
– ident: ref6
  doi: 10.1109/4234.917094
– ident: ref16
  doi: 10.1109/TSP.2021.3102106
– ident: ref3
  doi: 10.1109/TIT.2005.850152
– ident: ref28
  doi: 10.1007/978-3-319-91578-4
– ident: ref37
  doi: 10.1137/20M1346912
– ident: ref9
  doi: 10.1109/VTCFall.2016.7881075
– ident: ref19
  doi: 10.1007/s10107-012-0584-1
– ident: ref20
  doi: 10.1007/s00245-019-09564-3
– year: 2020
  ident: ref29
  article-title: Alternating direction method of multipliers for quantization
  publication-title: arXiv 2009 03482
– ident: ref15
  doi: 10.1007/978-3-540-88906-9_18
– year: 2019
  ident: ref2
  publication-title: Physical layer procedures for data
– ident: ref39
  doi: 10.1137/17M1141904
– ident: ref30
  doi: 10.1093/imanum/8.1.141
– ident: ref5
  doi: 10.1109/WIAD.2010.5544947
– ident: ref23
  doi: 10.1007/BF02278710
– ident: ref26
  doi: 10.1137/1.9781611974973.52
– ident: ref35
  doi: 10.1515/9780691187563
– ident: ref34
  doi: 10.1007/978-3-642-35289-8_25
– volume: 35
  start-page: 30
  year: 2012
  ident: ref8
  article-title: A selection algorithm of precoding codebook for TDD LTE
  publication-title: Journal of Beijing University of Posts and Telecommunicatns
– year: 2021
  ident: ref21
  publication-title: Functions for the Rectangular Assignment Problem
– ident: ref31
  doi: 10.1137/S1052623403428208
– ident: ref18
  doi: 10.1137/15M1048021
– ident: ref4
  doi: 10.1109/WSA.2010.5456388
– ident: ref10
  doi: 10.1109/VTCSpring.2013.6691823
– year: 2009
  ident: ref12
  publication-title: Optimal Quadratic Programming Algorithms With Applications to Variational Inequalities
– ident: ref25
  doi: 10.1007/s10915-017-0376-0
– ident: ref32
  doi: 10.1023/A:1017501703105
– volume: 13
  start-page: 556
  year: 2001
  ident: ref14
  article-title: Algorithms for non-negative matrix factorization
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref22
  doi: 10.1137/0105003
– ident: ref36
  doi: 10.1007/s00186-019-00673-x
– start-page: 1
  year: 2012
  ident: ref1
  article-title: Adaption feedback of precoding matrix indicator for 3GPP LTE/LTE-A system
  publication-title: Proc 4th Int High Speed Intell Commun Forum
– ident: ref13
  doi: 10.1137/050637467
– ident: ref11
  doi: 10.1109/TIT.2011.2112070
– ident: ref17
  doi: 10.1007/s10107-022-01794-8
– ident: ref7
  doi: 10.1109/VETECS.2010.5493709
– ident: ref27
  doi: 10.1109/SPAWC.2017.8227768
SSID ssj0017655
Score 2.407731
Snippet In this paper, we consider the large-scale precoding matrix indicator (PMI) selection problem at the receiver in wireless communications. The selection is...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 9553
SubjectTerms Algorithms
block coordinate descent
Channel capacity
discrete projected gradient
Gradient methods
Iterative methods
Mathematical analysis
Optimization
partial permutation
Permutations
Precoding
Precoding matrix indicator
STEM
stochastic methods
Stochastic processes
Wireless communication
Wireless communications
Title Stochastic Augmented Projected Gradient Methods for the Large-Scale Precoding Matrix Indicator Selection Problem
URI https://ieeexplore.ieee.org/document/9787340
https://www.proquest.com/docview/2735381130
Volume 21
WOSCitedRecordID wos000882003900049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017655
  issn: 1536-1276
  databaseCode: RIE
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVKxQADXwVRKMgDCxKBfDhxPFYVBaS2qtQKukWxfQGWtGpTxM_n7KRRJVjYPDhW5Gf77vl89wi5kZELvvC1Ayb-z6RyHam054QMMiY12nibSPs64KNRPJuJcYPc1bkwAGAfn8G9adpYvp6rtbkqM9VgecCQoO9wHpW5WnXEgEdW4RQ3sNGV4XVI0hUP07ceEkHfR37KeWyuObZMkNVU-XUQW-vSP_zffx2Rg8qLpN0S9mPSgPyE7G_VFmyRxaSYq4_UlGGm3fW7rb2p6bi8eMHW09I-9iro0GpIryh6rxS9QTowb8OdCWIH2B3ZqbFudGhK-X_Tl9zEdZCn04kV0EFUzZhGk-aUTPuP096zU8krOApteuEE0hMa3VU3CGXms9BL0dkQWaxVKkNgOlOQIRuKdQo68BC2NNCCYV8pfe2mwRlp5vMczgnVyDoCD6JYhBnzQQrIXFwEXHJfucBZm9xuJjxZlEU0Eks-XJEgOIkBJ6nAaZOWmeC6XzW3bdLZIJRUu2yVoOuF57WHZvji768uyZ4Zu8wd7JBmsVzDFdlVX8XnanltF9APEy_F1w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6KCurBt1itmoMXwdV9ZJvNsYi1xbYILept2SSz6qUt7Vb8-U6yaxH04i2H7IN8SWa-TGY-gAvV9DGUofHQxv-50r6ntAm8mGPOlSEb7xJpn3piMEheXuRjDa6WuTCI6C6f4bVtuli-meiFPSqz1WBFxImgr8Y8SniZrbWMGYim0zilJWyVZcQyKOnLm9HzLVHBMCSGKkRiDzp-GCGnqvJrK3b2pb39vz_bga3Kj2StEvhdqOF4DzZ_VBfch-mwmOi3zBZiZq3Fq6u-adhjefRCrfuZu-5VsL5TkZ4z8l8Z-YOsZ2-He0NCD6k78VNr31jfFvP_ZN2xjewQU2dDJ6FDuNp3WlWaAxi170a3Ha8SWPA0WfXCi1QgDTmsfhSrPORxkJG7IfPE6EzFyE2uMSc-lJgMTRQQcFlkJKe-SoXGz6JDWBlPxngEzBDviAJsJjLOeYhKYu7TNBBKhNpHwetw-T3g6bQso5E6-uHLlMBJLThpBU4d9u0AL_tVY1uHxjdCabXO5ik5X7RjB2SIj_9-6hzWO6N-L-11Bw8nsGG_U2YSNmClmC3wFNb0R_E-n525yfQFmxzJJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+Augmented+Projected+Gradient+Methods+for+the+Large-Scale+Precoding+Matrix+Indicator+Selection+Problem&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Zhang%2C+Jiaqi&rft.au=Jin%2C+Zeyu&rft.au=Jiang%2C+Bo&rft.au=Wen%2C+Zaiwen&rft.date=2022-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=21&rft.issue=11&rft.spage=9553&rft_id=info:doi/10.1109%2FTWC.2022.3177840&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon