HGATE: Heterogeneous Graph Attention Auto-Encoders

Graph auto-encoder is considered a framework for unsupervised learning on graph-structured data by representing graphs in a low dimensional space. It has been proved very powerful for graph analytics. In the real world, complex relationships in various entities can be represented by heterogeneous gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering Jg. 35; H. 4; S. 3938 - 3951
Hauptverfasser: Wang, Wei, Suo, Xiaoyang, Wei, Xiangyu, Wang, Bin, Wang, Hao, Dai, Hong-Ning, Zhang, Xiangliang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1041-4347, 1558-2191
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!