Recent approaches to global optimization problems through Particle Swarm Optimization

This paper presents an overview of our most recent results concerning the Particle Swarm Optimization (PSO) method. Techniques for the alleviation of local minima, and for detecting multiple minimizers are described. Moreover, results on the ability of the PSO in tackling Multiobjective, Minimax, In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Natural computing Jg. 1; H. 2-3; S. 235 - 306
Hauptverfasser: Parsopoulos, K.E., Vrahatis, M.N.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Nature B.V 01.06.2002
Schlagworte:
ISSN:1567-7818, 1572-9796
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an overview of our most recent results concerning the Particle Swarm Optimization (PSO) method. Techniques for the alleviation of local minima, and for detecting multiple minimizers are described. Moreover, results on the ability of the PSO in tackling Multiobjective, Minimax, Integer Programming and super(1) errors-in-variables problems, as well as problems in noisy and continuously changing environments, are reported. Finally, a Composite PSO, in which the heuristic parameters of PSO are controlled by a Differential Evolution algorithm during the optimization, is described, and results for many well-known and widely used test functions are given.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ISSN:1567-7818
1572-9796
DOI:10.1023/A:1016568309421