Intelligent Prediction of Uniaxial Compressive Strength Based on Multi-Source Information Fusion

Uniaxial compressive strength (UCS) is a fundamental indicator of formation hardness, playing a vital role in evaluating geomechanical properties during drilling process. Accurate UCS prediction enables real-time assessment of formation conditions, contributing to improved drilling safety and effici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of advanced computational intelligence and intelligent informatics Jg. 29; H. 6; S. 1500 - 1506
Hauptverfasser: Li, Quanxin, Dong, Hongbo, Zhang, Youzhen, Fang, Jun, Li, Wangnian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Tokyo Fuji Technology Press Co. Ltd 20.11.2025
Schlagworte:
ISSN:1343-0130, 1883-8014
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Uniaxial compressive strength (UCS) is a fundamental indicator of formation hardness, playing a vital role in evaluating geomechanical properties during drilling process. Accurate UCS prediction enables real-time assessment of formation conditions, contributing to improved drilling safety and efficiency. This study proposes a multi-source data fusion approach that integrates vibration data with conventional drilling parameters to enhance UCS prediction accuracy. To address the inconsistency in time scales between the two data sources, a piecewise cubic Hermite interpolation method is applied for temporal alignment. The fused dataset is then used to retrain an extreme learning machine model. Experimental validation is conducted using data collected from a surface drilling test site. Results demonstrate that the proposed method significantly outperforms single-source prediction models, highlighting the effectiveness of vibration-assisted data fusion in real-time UCS estimation.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1343-0130
1883-8014
DOI:10.20965/jaciii.2025.p1500