Improved Archimedes Optimization Algorithm with Deep Learning Empowered Fall Detection System

Human fall detection (FD) acts as an important part in creating sensor based alarm system, enabling physical therapists to minimize the effect of fall events and save human lives. Generally, elderly people suffer from several diseases, and fall action is a common situation which can occur at any tim...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers, materials & continua Ročník 72; číslo 2; s. 2713 - 2727
Hlavní autoři: Saleh Alluhaidan, Ala, Alajmi, Masoud, N. Al-Wesabi, Fahd, Mustafa Hilal, Anwer, Ahmed Hamza, Manar, Motwakel, Abdelwahed
Médium: Journal Article
Jazyk:angličtina
Vydáno: Henderson Tech Science Press 2022
Témata:
ISSN:1546-2226, 1546-2218, 1546-2226
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Human fall detection (FD) acts as an important part in creating sensor based alarm system, enabling physical therapists to minimize the effect of fall events and save human lives. Generally, elderly people suffer from several diseases, and fall action is a common situation which can occur at any time. In this view, this paper presents an Improved Archimedes Optimization Algorithm with Deep Learning Empowered Fall Detection (IAOA-DLFD) model to identify the fall/non-fall events. The proposed IAOA-DLFD technique comprises different levels of pre-processing to improve the input image quality. Besides, the IAOA with Capsule Network based feature extractor is derived to produce an optimal set of feature vectors. In addition, the IAOA uses to significantly boost the overall FD performance by optimal choice of CapsNet hyperparameters. Lastly, radial basis function (RBF) network is applied for determining the proper class labels of the test images. To showcase the enhanced performance of the IAOA-DLFD technique, a wide range of experiments are executed and the outcomes stated the enhanced detection outcome of the IAOA-DLFD approach over the recent methods with the accuracy of 0.997.
AbstractList Human fall detection (FD) acts as an important part in creating sensor based alarm system, enabling physical therapists to minimize the effect of fall events and save human lives. Generally, elderly people suffer from several diseases, and fall action is a common situation which can occur at any time. In this view, this paper presents an Improved Archimedes Optimization Algorithm with Deep Learning Empowered Fall Detection (IAOA-DLFD) model to identify the fall/non-fall events. The proposed IAOA-DLFD technique comprises different levels of pre-processing to improve the input image quality. Besides, the IAOA with Capsule Network based feature extractor is derived to produce an optimal set of feature vectors. In addition, the IAOA uses to significantly boost the overall FD performance by optimal choice of CapsNet hyperparameters. Lastly, radial basis function (RBF) network is applied for determining the proper class labels of the test images. To showcase the enhanced performance of the IAOA-DLFD technique, a wide range of experiments are executed and the outcomes stated the enhanced detection outcome of the IAOA-DLFD approach over the recent methods with the accuracy of 0.997.
Author Mustafa Hilal, Anwer
Saleh Alluhaidan, Ala
Ahmed Hamza, Manar
N. Al-Wesabi, Fahd
Motwakel, Abdelwahed
Alajmi, Masoud
Author_xml – sequence: 1
  givenname: Ala
  surname: Saleh Alluhaidan
  fullname: Saleh Alluhaidan, Ala
– sequence: 2
  givenname: Masoud
  surname: Alajmi
  fullname: Alajmi, Masoud
– sequence: 3
  givenname: Fahd
  surname: N. Al-Wesabi
  fullname: N. Al-Wesabi, Fahd
– sequence: 4
  givenname: Anwer
  surname: Mustafa Hilal
  fullname: Mustafa Hilal, Anwer
– sequence: 5
  givenname: Manar
  surname: Ahmed Hamza
  fullname: Ahmed Hamza, Manar
– sequence: 6
  givenname: Abdelwahed
  surname: Motwakel
  fullname: Motwakel, Abdelwahed
BookMark eNp1kMFOAjEQQBuDiYDePW7iGWy7pbt7JAhKQsJBPZqm285CyXZ3bYsEv94KHoyJl5lJZt5M5g1Qr2kbQOiW4HFKOWb3yqoxxZSOMZ3EfIH6ZML4iFLKe7_qKzTwfodxytMC99Hb0nau_QCdTJ3aGgsafLLugrHmUwbTNsm03rTOhK1NDjEmDwBdsgLpGtNskrnt2gO4iC9kXcdmAHWino8-gL1Gl5WsPdz85CF6XcxfZk-j1fpxOZuuRoqyNIx4rnERg1Y5yzQrC6VzVakirQgUsZNByTRXUmfAaJZXsiSAaZmqotKcZiwdorvz3vjL-x58ELt275p4UlDOOCaEEhqn8HlKudZ7B5XonLHSHQXB4iRRRIniW6I4S4wI_4MoE05egpOm_h_8Ahboec8
CitedBy_id crossref_primary_10_1016_j_measurement_2024_114186
crossref_primary_10_32604_cmc_2023_039084
Cites_doi 10.1109/ACCESS.2021.3094243
10.3390/e23030328
10.1016/j.eswa.2020.114226
10.1016/j.ins.2020.05.070
10.1109/JSEN.2020.2967100
10.5373/JARDCS/V12SP7/20202102
10.3390/s18103363
10.1007/s11042-020-10304-x
10.3390/electronics9111831
10.1007/s10489-020-01893-z
10.3390/jsan10030039
10.30534/ijeter/2020/28832020
10.1109/ACCESS.2021.3114871
10.3390/s18093153
10.1109/ACCESS.2021.3061626
ContentType Journal Article
Copyright 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
JG9
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.32604/cmc.2022.025202
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
EndPage 2727
ExternalDocumentID 10_32604_cmc_2022_025202
GroupedDBID AAFWJ
AAYXX
ACIWK
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
J9A
OK1
P2P
PHGZM
PHGZT
PIMPY
RTS
TUS
7SC
7SR
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c243t-68d0968ddc847d4b9cd8cfc93f1e90967eb4d6cad7e4278fab1e02b3c9fd62743
IEDL.DBID BENPR
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000779564300032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1546-2226
1546-2218
IngestDate Mon Jun 30 04:32:48 EDT 2025
Tue Nov 18 21:49:04 EST 2025
Sat Nov 29 03:13:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c243t-68d0968ddc847d4b9cd8cfc93f1e90967eb4d6cad7e4278fab1e02b3c9fd62743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2646011212?pq-origsite=%requestingapplication%
PQID 2646011212
PQPubID 2048737
PageCount 15
ParticipantIDs proquest_journals_2646011212
crossref_primary_10_32604_cmc_2022_025202
crossref_citationtrail_10_32604_cmc_2022_025202
PublicationCentury 2000
PublicationDate 2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2022
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Ramirez (ref10) 2021; 9
Villaverde (ref13) 2020; 9
Sreenidhi (ref3) 2020; 8
Deng (ref17) 2018; 18
Khan (ref6) 2021; 9
Torti (ref7) 2018
ref22
Mauldin (ref8) 2018; 18
ref21
Sangeetha (ref12) 2020; 12
ref16
Sultana (ref5) 2021; 23
Soni (ref14) 2020
Galvão (ref4) 2021; 168
Hashim (ref18) 2021; 51
Thakur (ref2) 2021; 10
Vaiyapuri (ref9) 2021; 9
Panda (ref20) 2021; 80
Bhattacharya (ref1) 2020; 20
Fathy (ref19) 2021; 14
Mrozek (ref11) 2020; 537
Nari (ref15) 2016
References_xml – start-page: 405
  year: 2018
  ident: ref7
  article-title: Embedded real-time fall detection with deep learning on wearable devices
– volume: 9
  start-page: 113879
  year: 2021
  ident: ref9
  article-title: Internet of things and deep learning enabled elderly fall detection model for smart homecare
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3094243
– volume: 23
  start-page: 328
  year: 2021
  ident: ref5
  article-title: Classification of indoor human fall events using deep learning
  publication-title: Entropy
  doi: 10.3390/e23030328
– volume: 168
  start-page: 114226
  year: 2021
  ident: ref4
  article-title: A multimodal approach using deep learning for fall detection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.114226
– volume: 537
  start-page: 132
  year: 2020
  ident: ref11
  article-title: Fall detection in older adults with mobile IoT devices and machine learning in the cloud and on the edge
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2020.05.070
– volume: 20
  start-page: 5072
  year: 2020
  ident: ref1
  article-title: Deep learning radar design for breathing and fall detection
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2020.2967100
– volume: 14
  start-page: 1
  year: 2021
  ident: ref19
  article-title: Archimedes optimization algorithm based maximum power point tracker for wind energy generation system
  publication-title: Ain Shams Engineering Journal
– volume: 12
  start-page: 232
  year: 2020
  ident: ref12
  article-title: Fall detection for elderly people using video-based analysis
  publication-title: Journal of Advanced Research in Dynamical and Control Systems
  doi: 10.5373/JARDCS/V12SP7/20202102
– ident: ref21
– volume: 18
  start-page: 3363
  year: 2018
  ident: ref8
  article-title: SmartFall: A smartwatch-based fall detection system using deep learning
  publication-title: Sensors
  doi: 10.3390/s18103363
– volume: 80
  year: 2021
  ident: ref20
  article-title: Oppositional salp swarm algorithm with mutation operator for global optimization and application in training higher order neural networks
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-020-10304-x
– ident: ref22
– volume: 9
  start-page: 1831
  year: 2020
  ident: ref13
  article-title: A simulator to support machine learning-based wearable fall detection systems
  publication-title: Electronics
  doi: 10.3390/electronics9111831
– volume: 51
  start-page: 1531
  year: 2021
  ident: ref18
  article-title: Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-020-01893-z
– start-page: 229
  year: 2020
  ident: ref14
  article-title: An approach to enhance fall detection using machine learning classifier
– volume: 10
  start-page: 39
  year: 2021
  ident: ref2
  article-title: A study of fall detection in assisted living: Identifying and improving the optimal machine learning method
  publication-title: JSAN
  doi: 10.3390/jsan10030039
– volume: 8
  start-page: 780
  year: 2020
  ident: ref3
  article-title: Real-time human fall detection and emotion recognition using embedded device and deep learning
  publication-title: International Journal of Emerging Trends in Engineering Research
  doi: 10.30534/ijeter/2020/28832020
– volume: 9
  start-page: 131614
  year: 2021
  ident: ref6
  article-title: 3D hand gestures segmentation and optimized classification using deep learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3114871
– start-page: 88
  year: 2016
  ident: ref15
  article-title: A simple design of wearable device for fall detection with accelerometer and gyroscope
– ident: ref16
– volume: 18
  start-page: 3153
  year: 2018
  ident: ref17
  article-title: Hyperspectral image classification with capsule network using limited training samples
  publication-title: Sensors
  doi: 10.3390/s18093153
– volume: 9
  start-page: 33532
  year: 2021
  ident: ref10
  article-title: Fall detection and activity recognition using human skeleton features
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3061626
SSID ssj0036390
Score 2.2470274
Snippet Human fall detection (FD) acts as an important part in creating sensor based alarm system, enabling physical therapists to minimize the effect of fall events...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2713
SubjectTerms Alarm systems
Algorithms
Deep learning
Fall detection
Feature extraction
Image enhancement
Image quality
Machine learning
Optimization
Optimization algorithms
Performance enhancement
Radial basis function
Title Improved Archimedes Optimization Algorithm with Deep Learning Empowered Fall Detection System
URI https://www.proquest.com/docview/2646011212
Volume 72
WOSCitedRecordID wos000779564300032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: BENPR
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: PIMPY
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagZWChPEWhIA8sDKF5uEk8oQKtQIISIZDKgKL4kYKUpKEJ_H7OiVPE0oUpg2Mrytn33Z3t70PozLOkI5jvGnZEuUEEcw0_EpDzeJ5jxySCELlSLbn3JhN_OqWBLrgV-lhl4xMrRy3mXNXI-wDckDtY4Gkv809DqUap3VUtobGO2oqpjLRQ-2o0CZ4aX-wA_lZXIgcEvgbQrN6ohJDFJH2eKgpD274A2Ld1WWUJTH_9cgU2485_P3MbbekwEw_rebGD1mS2izqNhAPWK3oPvdVFBSlwRUEL0CgL_AhuJNX3M_EwmcH45XuKVckW30iZY03KOsOjNFcqa9B9HCUJNJbVya4M10To--hlPHq-vjW04oLBbeKUhusLSGl8ITiAliCMKuaAmFMntiSFFk8yIlweCU8qiY44YpY0beZwGgsl4uMcoFY2z-QhwqYlbeEx06cQ4sSEMm4J8B48JmxA3QHron7zu0Ou6ciVKkYSQlpSGSgEA4XKQGFtoC46X_bIayqOFe_2GvOEelEW4a9tjlY3H6NNNVZdaemhVrn4kidog3-XH8XiVM8xeAZ3D8HrD19F3AE
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V27TsMwFL2CggQLb8QbDzAwhDaOm8QDQhWlouqDDiDBgEL8CCC1pdAA4qf4Rq4TB8TCxsDs2JLjo3Mf9r0HYC9wtadE6Ds05tJhSvhOGCuMeYLAowmL0UXOVEvaQbcbXl3x3gR8FLUw5lllwYkZUatHaXLkZTTcGDu4yLTHoyfHqEaZ29VCQiOHRUu_v2HINj5q1vF89yltnF6cnDlWVcCRlHmp44cK3fZQKYnErJjgpjo-kdxLXM1xJNCCKV_GKtBGhiKJhasrVHiSJ8oI1Xi47iRMMQR7WIKpXrPTuy6430N7n5VgVhnuHq1nfjGKLlKFleXAtEyk9BDdDGrTOF-G8KcdyIxbY_6__ZYFmLNuNKnluF-ECT1cgvlCooJYxlqGmzxpohXJWuyi6ddjco40ObD1p6TWv8P9pPcDYlLSpK71iNims3fkdDAyKnI4vRH3-ziYZi_XhiRv9L4Cl3-yyVUoDR-Heg1IxdVUBaIScnThEsaFdBWyo0yYqHK_KtahXBxvJG27daP60Y8w7MoAESEgIgOIKAfEOhx8zRjlrUZ--XargENkSWccfWNh4_fhXZg5u-i0o3az29qEWbNunlXaglL6_KK3YVq-pg_j5x2LbwK3f42dTweDOdA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Archimedes+Optimization+Algorithm+with+Deep+Learning+Empowered+Fall+Detection+System&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Saleh+Alluhaidan%2C+Ala&rft.au=Alajmi%2C+Masoud&rft.au=N.+Al-Wesabi%2C+Fahd&rft.au=Mustafa+Hilal%2C+Anwer&rft.date=2022&rft.issn=1546-2226&rft.volume=72&rft.issue=2&rft.spage=2713&rft.epage=2727&rft_id=info:doi/10.32604%2Fcmc.2022.025202&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2022_025202
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon