Pollution risk assessment by designing predictive binary classification models of substituted benzenes centered on data mining and machine learning techniques

There is a growing need for industry and global regulatory agencies to develop rapid chemical safety assessment through more reliable theoretical models. Thus , quantitative structure–toxicity relationship (QSTR) models are preferred by regulators to bring chemicals to market rather than long and ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international Jg. 32; H. 35; S. 21092 - 21116
Hauptverfasser: N’guessan, Aubin, Dali, Brice, Esmel, Elvice Akori, Moussé, Logbo Mathias, Ziao, Nahossé, N’guessan, Raymond Kré, Megnassan, Eugene
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2025
Springer Nature B.V
Schlagworte:
ISSN:1614-7499, 0944-1344, 1614-7499
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!