Pollution risk assessment by designing predictive binary classification models of substituted benzenes centered on data mining and machine learning techniques
There is a growing need for industry and global regulatory agencies to develop rapid chemical safety assessment through more reliable theoretical models. Thus , quantitative structure–toxicity relationship (QSTR) models are preferred by regulators to bring chemicals to market rather than long and ex...
Gespeichert in:
| Veröffentlicht in: | Environmental science and pollution research international Jg. 32; H. 35; S. 21092 - 21116 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1614-7499, 0944-1344, 1614-7499 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!