Proximal gradient methods with inexact oracle of degree q for composite optimization

We introduce the concept of inexact first-order oracle of degree q for a possibly nonconvex and nonsmooth function, which naturally appears in the context of approximate gradient, weak level of smoothness and other situations. Our definition is less conservative than those found in the existing lite...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization letters Ročník 19; číslo 2; s. 285 - 306
Hlavní autoři: Nabou, Yassine, Glineur, François, Necoara, Ion
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.03.2025
ISSN:1862-4472, 1862-4480
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We introduce the concept of inexact first-order oracle of degree q for a possibly nonconvex and nonsmooth function, which naturally appears in the context of approximate gradient, weak level of smoothness and other situations. Our definition is less conservative than those found in the existing literature, and it can be viewed as an interpolation between fully exact and the existing inexact first-order oracle definitions. We analyze the convergence behavior of a (fast) inexact proximal gradient method using such an oracle for solving (non)convex composite minimization problems. We derive complexity estimates and study the dependence between the accuracy of the oracle and the desired accuracy of the gradient or of the objective function. Our results show that better rates can be obtained both theoretically and in numerical simulations when q is large.
ISSN:1862-4472
1862-4480
DOI:10.1007/s11590-024-02118-9