Proximal gradient methods with inexact oracle of degree q for composite optimization

We introduce the concept of inexact first-order oracle of degree q for a possibly nonconvex and nonsmooth function, which naturally appears in the context of approximate gradient, weak level of smoothness and other situations. Our definition is less conservative than those found in the existing lite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization letters Jg. 19; H. 2; S. 285 - 306
Hauptverfasser: Nabou, Yassine, Glineur, François, Necoara, Ion
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 01.03.2025
ISSN:1862-4472, 1862-4480
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We introduce the concept of inexact first-order oracle of degree q for a possibly nonconvex and nonsmooth function, which naturally appears in the context of approximate gradient, weak level of smoothness and other situations. Our definition is less conservative than those found in the existing literature, and it can be viewed as an interpolation between fully exact and the existing inexact first-order oracle definitions. We analyze the convergence behavior of a (fast) inexact proximal gradient method using such an oracle for solving (non)convex composite minimization problems. We derive complexity estimates and study the dependence between the accuracy of the oracle and the desired accuracy of the gradient or of the objective function. Our results show that better rates can be obtained both theoretically and in numerical simulations when q is large.
AbstractList We introduce the concept of inexact first-order oracle of degree q for a possibly nonconvex and nonsmooth function, which naturally appears in the context of approximate gradient, weak level of smoothness and other situations. Our definition is less conservative than those found in the existing literature, and it can be viewed as an interpolation between fully exact and the existing inexact first-order oracle definitions. We analyze the convergence behavior of a (fast) inexact proximal gradient method using such an oracle for solving (non)convex composite minimization problems. We derive complexity estimates and study the dependence between the accuracy of the oracle and the desired accuracy of the gradient or of the objective function. Our results show that better rates can be obtained both theoretically and in numerical simulations when q is large.
Author Necoara, Ion
Glineur, François
Nabou, Yassine
Author_xml – sequence: 1
  givenname: Yassine
  surname: Nabou
  fullname: Nabou, Yassine
– sequence: 2
  givenname: François
  surname: Glineur
  fullname: Glineur, François
– sequence: 3
  givenname: Ion
  surname: Necoara
  fullname: Necoara, Ion
BookMark eNo9kM9KAzEYxINUsK2-gKe8wGq-bEw2Ryn-g4Ie6jlkk2_byO6mJgGrT-9qxcMwAwMD81uQ2RhHJOQS2BUwpq4zwI1mFeNiEkBT6RMyh0bySoiGzf6z4mdkkfMbYxJA6znZvKR4CIPt6TZZH3AsdMCyiz7Tj1B2NIx4sK7QmKzrkcaOetwmRPpOu5ioi8M-5lCmZl_CEL5sCXE8J6ed7TNe_PmSvN7fbVaP1fr54Wl1u64cF7xUvrVWa6k6Ibh23qmm5bzRLQLX3oFvatVJJ7VgTjnGUIOS0gsuaovMoq2XhB93XYo5J-zMPk1f0qcBZn64mCMXM3Exv1yMrr8BVGhZWg
Cites_doi 10.1007/978-3-7908-2604-3_16
10.1007/s10957-016-0999-6
10.1137/060676386
10.20537/2076-7633-2022-14-2-321-334
10.1007/978-3-030-22629-9_8
10.1080/10556788.2023.2261604
10.1007/s10589-017-9912-y
10.1007/978-3-642-02431-3
10.1007/s10107-013-0677-5
10.1007/978-1-4419-8853-9
10.1111/j.2517-6161.1996.tb02080.x
10.1007/3-540-31246-3
10.1007/s10107-012-0629-5
10.1137/1.9781611974997
10.1016/0041-5553(63)90382-3
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1007/s11590-024-02118-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1862-4480
EndPage 306
ExternalDocumentID 10_1007_s11590_024_02118_9
GroupedDBID -Y2
.VR
06D
0R~
0VY
123
1N0
203
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ATHPR
AXYYD
AYFIA
AYJHY
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
CITATION
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9M
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
ID FETCH-LOGICAL-c242t-dbaa9967f4429cdc78b2289be129dc1d837f6c6940c7c00e91766d4243ae0aea3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001215975400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1862-4472
IngestDate Sat Nov 29 02:44:14 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c242t-dbaa9967f4429cdc78b2289be129dc1d837f6c6940c7c00e91766d4243ae0aea3
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s11590-024-02118-9.pdf
PageCount 22
ParticipantIDs crossref_primary_10_1007_s11590_024_02118_9
PublicationCentury 2000
PublicationDate 2025-03-00
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-00
PublicationDecade 2020
PublicationTitle Optimization letters
PublicationYear 2025
References 2118_CR2
B Mordukhovich (2118_CR13) 2006
A Agafonov (2118_CR1) 2017
2118_CR3
J-B Hiriart-Urruty (2118_CR11) 1979; 60
Yu Nesterov (2118_CR15) 2013; 140
PW Wang (2118_CR20) 2014; 15
Y Nesterov (2118_CR14) 2004
2118_CR4
2118_CR5
P Dvurechensky (2118_CR9) 2022; 14
A d’Aspremont (2118_CR6) 2008; 19
O Devolder (2118_CR7) 2013; 146
P Dvurechensky (2118_CR8) 2016; 171
2118_CR10
L Stella (2118_CR12) 2017; 67
R Rockafellar (2118_CR17) 1998
R Tibshirani (2118_CR19) 1996; 58
BT Polyak (2118_CR16) 1963; 3
2118_CR18
References_xml – ident: 2118_CR4
  doi: 10.1007/978-3-7908-2604-3_16
– volume: 171
  start-page: 121
  issue: 1
  year: 2016
  ident: 2118_CR8
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-016-0999-6
– volume: 19
  start-page: 1171
  issue: 3
  year: 2008
  ident: 2118_CR6
  publication-title: SIAM J. Optim.
  doi: 10.1137/060676386
– volume: 14
  start-page: 321
  issue: 2
  year: 2022
  ident: 2118_CR9
  publication-title: Comput. Res. Model.
  doi: 10.20537/2076-7633-2022-14-2-321-334
– ident: 2118_CR18
  doi: 10.1007/978-3-030-22629-9_8
– year: 2017
  ident: 2118_CR1
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2023.2261604
– volume: 67
  start-page: 443
  year: 2017
  ident: 2118_CR12
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-017-9912-y
– ident: 2118_CR10
– volume-title: Variational Analysis
  year: 1998
  ident: 2118_CR17
  doi: 10.1007/978-3-642-02431-3
– volume: 146
  start-page: 37
  year: 2013
  ident: 2118_CR7
  publication-title: Math. Prog.
  doi: 10.1007/s10107-013-0677-5
– volume-title: Introductory lectures on convex optimization: a basic course
  year: 2004
  ident: 2118_CR14
  doi: 10.1007/978-1-4419-8853-9
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 2118_CR19
  publication-title: J. Roy. Stat. Soc.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume-title: Variational analysis and generalized differentiation: basic theory
  year: 2006
  ident: 2118_CR13
  doi: 10.1007/3-540-31246-3
– volume: 140
  start-page: 125
  issue: 1
  year: 2013
  ident: 2118_CR15
  publication-title: Math. Program.
  doi: 10.1007/s10107-012-0629-5
– ident: 2118_CR2
  doi: 10.1137/1.9781611974997
– volume: 15
  start-page: 1523
  issue: 4
  year: 2014
  ident: 2118_CR20
  publication-title: J. Mach. Learn. Res.
– volume: 60
  start-page: 57
  year: 1979
  ident: 2118_CR11
  publication-title: Mem. Soc. Math. France
– volume: 3
  start-page: 864
  issue: 4
  year: 1963
  ident: 2118_CR16
  publication-title: Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(63)90382-3
– ident: 2118_CR3
– ident: 2118_CR5
SSID ssj0061199
Score 2.350636
Snippet We introduce the concept of inexact first-order oracle of degree q for a possibly nonconvex and nonsmooth function, which naturally appears in the context of...
SourceID crossref
SourceType Index Database
StartPage 285
Title Proximal gradient methods with inexact oracle of degree q for composite optimization
Volume 19
WOSCitedRecordID wos001215975400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1862-4480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061199
  issn: 1862-4472
  databaseCode: RSV
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5VFQMMvBFveWADC9t52SNCVExVBQV1ixw_UIe2NA2oP59zkooOMHTIlNPJupP83Zfc3Qdwg1VqZLWXFMEDCYpUjBYJM9R45xPpRRCqqcUmsn5fjkZq0IG7f__g3y-wZkEPiCX4YDlMw7QeT0WQK3h5fV9duylvxCK5DGNAcSbaCZm_Xayh0Bqc9PY2O8g-7LZlI3lo8nwAHTc9hJ21ZYJHMByUs-V4glYfZd3HVZFGHnpBwsdWgpZLbSqCOUcXZOaJdUi2HZkTLFxJ6C0PDVz4Bm-RSTueeQxvvafh4zNtNROoQbCtqC20RgqT-RiBxliTyUIgpyoc4ro13CIf9alJVcxMZhhzKiyItLGII-2Ydjo6ge50NnWnQIxNmLBJkqqIxzbl0nruWZFI7h2SFHUGt6sY5p_Naoz8dwlyiFWOscrrWOXqfCPrC9gWQWi3bva6hG5Vfrkr2DLf1XhRXteJ_wG086Tq
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proximal+gradient+methods+with+inexact+oracle+of+degree+q+for+composite+optimization&rft.jtitle=Optimization+letters&rft.au=Nabou%2C+Yassine&rft.au=Glineur%2C+Fran%C3%A7ois&rft.au=Necoara%2C+Ion&rft.date=2025-03-01&rft.issn=1862-4472&rft.eissn=1862-4480&rft.volume=19&rft.issue=2&rft.spage=285&rft.epage=306&rft_id=info:doi/10.1007%2Fs11590-024-02118-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11590_024_02118_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-4472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-4472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-4472&client=summon