MultiSQP-GS: a sequential quadratic programming algorithm via gradient sampling for nonsmooth constrained multiobjective optimization

In this paper, we propose a method for solving constrained nonsmooth multiobjective optimization problems which is based on a Sequential Quadratic Programming (SQP) type approach and the Gradient Sampling (GS) technique. We consider the multiobjective problems with noncovex and nonsmooth objective a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computational optimization and applications Ročník 89; číslo 3; s. 729 - 767
Hlavní autori: Rashidi, Mehri, Soleimani-damaneh, Majid
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.12.2024
Predmet:
ISSN:0926-6003, 1573-2894
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we propose a method for solving constrained nonsmooth multiobjective optimization problems which is based on a Sequential Quadratic Programming (SQP) type approach and the Gradient Sampling (GS) technique. We consider the multiobjective problems with noncovex and nonsmooth objective and constraint functions. The problem functions are assumed to be locally Lipschitz. Such problems arise in important applications, many having (weak) Pareto solutions at points of nondifferentiability of the problem functions. In our algorithm, a penalty function is applied to regularize the constraints, GS is employed to overcome the subdifferential calculation burden and make the search direction computation effective in nonsmooth regions, and SQP is used for getting a local linearization. We prove the global convergence properties of our algorithm to the stationary points which approximate (weak) Pareto front. Furthermore, we illustrate the ability and efficiency of the proposed method via a MATLAB implementation on several tests problems and compare it with some existing algorithms.
AbstractList In this paper, we propose a method for solving constrained nonsmooth multiobjective optimization problems which is based on a Sequential Quadratic Programming (SQP) type approach and the Gradient Sampling (GS) technique. We consider the multiobjective problems with noncovex and nonsmooth objective and constraint functions. The problem functions are assumed to be locally Lipschitz. Such problems arise in important applications, many having (weak) Pareto solutions at points of nondifferentiability of the problem functions. In our algorithm, a penalty function is applied to regularize the constraints, GS is employed to overcome the subdifferential calculation burden and make the search direction computation effective in nonsmooth regions, and SQP is used for getting a local linearization. We prove the global convergence properties of our algorithm to the stationary points which approximate (weak) Pareto front. Furthermore, we illustrate the ability and efficiency of the proposed method via a MATLAB implementation on several tests problems and compare it with some existing algorithms.
Author Rashidi, Mehri
Soleimani-damaneh, Majid
Author_xml – sequence: 1
  givenname: Mehri
  surname: Rashidi
  fullname: Rashidi, Mehri
  organization: Faculty of Mathematics and Computer Science, Amirkabir University of Technology
– sequence: 2
  givenname: Majid
  orcidid: 0000-0002-5913-1035
  surname: Soleimani-damaneh
  fullname: Soleimani-damaneh, Majid
  email: m.soleimani.d@ut.ac.ir, soleimani_d@yahoo.com
  organization: School of Mathematics, Statistics, and Computer Science, College of Science, University of Tehran
BookMark eNp9kMtOwzAQRS0EEm3hB1j5Bwy283DCDlVQkIoAFdbR1I_UVRK3tlsJ9vw3LmXNakYz985cnTE6HdygEbpi9JpRKm4Co0VVE8pzQmlJK8JO0IgVIiO8qvNTNKI1L0lJaXaOxiGsKaW1yPgIfT_vumgXb69ktrjFgIPe7vQQLXR4uwPlIVqJN961HvreDi2GrnXexlWP9xZwGiub9DhAv-kOe-M8TuFC71xcYZm66MEOWuH-8Mkt11pGu9fYbaLt7Vd64IYLdGagC_ryr07Qx8P9-_SRzF9mT9O7OZE855FUuWCcKimBLXOhSr0UhdaFWpraFFkmjTYg86qogCtRiSrnGTBllOAGaqhVNkH8eFd6F4LXptl424P_bBhtDiCbI8gmgWx-QTYsmbKjKSTx0GrfrN3ODynnf64f52h9fw
Cites_doi 10.1137/1.9781611973655
10.1137/15M1016424
10.1007/s10898-021-01118-8
10.1007/978-3-030-34910-3_13
10.1007/978-3-031-08720-2
10.1137/050639673
10.1007/978-3-319-08114-4
10.1007/s10589-020-00204-z
10.1137/0715011
10.1016/j.ejor.2018.08.018
10.1007/s10107-020-01568-0
10.1137/08071692X
10.1287/moor.9.1.87
10.1007/3-540-44719-9_20
10.1007/s101070100263
10.1007/s10589-012-9501-z
10.1090/S0025-5718-1980-0572855-7
10.1109/TSMCB.2004.834438
10.1080/02331934.2019.1576667
10.1007/s11075-021-01128-3
10.1007/s12190-020-01359-y
10.1137/030601296
10.1080/02331934.2010.522710
10.1137/090780201
10.1007/s10898-022-01242-z
10.1080/10556788.2012.714781
10.1007/BF00932858
10.1142/1493
10.1080/10556780410001689225
10.1007/978-1-4471-4820-3
10.1007/s001860000043
10.1137/S1052623403429093
10.1137/S0363012992227423
10.1109/TAC.1980.1102298
10.1016/j.ejco.2021.100008
10.1007/s10107-010-0408-0
10.1007/BFb0074500
10.1007/978-3-642-02431-3
10.1137/10079731X
10.1023/B:COAP.0000018877.86161.8b
10.1007/978-3-540-79159-1
10.1007/s11750-015-0406-8
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s10589-024-00608-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Mathematics
EISSN 1573-2894
EndPage 767
ExternalDocumentID 10_1007_s10589_024_00608_1
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHQJS
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EBU
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
ZL0
ZMTXR
ZWQNP
~8M
~EX
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFFHD
AFHIU
AHWEU
AIXLP
CITATION
PQGLB
ID FETCH-LOGICAL-c242t-847120dcca1b47d6eb75ee5dbf9f533cfefac4858a2d7878423a1dfd72fa9a9d3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001325685100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0926-6003
IngestDate Sat Nov 29 01:51:32 EST 2025
Thu May 22 04:31:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Gradient Sampling (GS)
Nonconvex optimization
49J52
Multiobjective programming
90C29
Nonsmooth optimization
90C26
Exact penalization
Sequential Quadratic Programming (SQP)
Constrained optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c242t-847120dcca1b47d6eb75ee5dbf9f533cfefac4858a2d7878423a1dfd72fa9a9d3
ORCID 0000-0002-5913-1035
PageCount 39
ParticipantIDs crossref_primary_10_1007_s10589_024_00608_1
springer_journals_10_1007_s10589_024_00608_1
PublicationCentury 2000
PublicationDate 20241200
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal
PublicationTitle Computational optimization and applications
PublicationTitleAbbrev Comput Optim Appl
PublicationYear 2024
Publisher Springer US
Publisher_xml – name: Springer US
References DebKThieleLLaumannsMZitzlerEScalable Test Problems for Evolutionary Multiobjective Optimization2005LondonSpringer
BagirovAKarmitsaNMäkeläMMIntroduction to Nonsmooth Optimization: Theory, Practice and Software2014HeidelbergSpringer
Beck, A.: Introduction to Nonlinear Optimization. MOS-SIAM Series in Optimization (2014)
NocedalJUpdating quasi-Newton matrices with limited storageMath. Comput.198035151773782572855
FukudaEHDrummondLGRauppFMA barrier-type method for multiobjective optimizationOptimization20206911247124874169272
CurtisFEOvertonMLA sequential quadratic programming algorithm for nonconvex, nonsmooth constrained optimizationSIAM J. Optim.2012224745002968863
Mäkelä, M., Montonen, O.: New multiobjective proximal bundle method with scaled improvement function. In: Bagirov, A., Gaudioso, M., Karmitsa, N., Mäkelä, M., Taheri, S. (eds). Numerical Nonsmooth Optimization. Springer (2020)
EichfelderGAdaptive Scalarization Methods in Multiobjective Optimization2008BerlinSpringer
AnsaryMATPandaGA sequential quadratic programming method for constrained multiobjective optimization problemsJ. Appl. Math. Comput.20206413793974149406
ByrdRHLopez-CalvaGNocedalJA line search exact penalty method using steering rulesMath. Program.201213339732921091
CurtisFEQueXAn adaptive gradient sampling algorithm for non-smooth optimizationOptim. Methods Softw.2013286130213243175468
BonnelHIusemANSvaiterBFProximal methods in vector optimizationSIAM J. Optim.20051549539702178482
DebKPratapAMeyarivanTZitzlerEThieleLDebKCoello CoelloCACorneDConstrained test problems for multi-objective evolutionary optimizationEvolutionary Multi-Criterion Optimization2001BerlinSpringer284298
CustodioALMadeiraJFVazAIVicenteLNDirect multisearch for multiobjective optimizationSIAM J. Optim.201121110911402837565
KiwielKCConvergence of the gradient sampling algorithm for nonsmooth nonconvex optimizationSIAM J. Optim.2007183793882338443
DebKMulti-objective Optimization Using Evolutionary Algorithms2001New YorkJohn Wiley & Sons
KiwielKCMethods of Descent for Nondifferentiable Optimization1985BerlinSpringer-Verlag
FukudaEHDrummondLGRauppFMAn external penalty-type method for multicriteriaTOP2016244935133509465
FliegeJDrummondLGSvaiterBFNewton’s method for multiobjective optimizationSIAM J. Optim.2009206026262515788
KoushkiJMiettinenKSoleimani-damanehMLR-NIMBUS: an interactive algorithm for uncertain multiobjective optimization with lightly robust efficient solutionsJ. Global Optim.2022838438634453651
Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers. TIK Report 214, ETH Zurich (2006)
HaaralaMMiettinenKMäkeläMMNew limited memory bundle method for large-scale nonsmooth optimizationOptim. Methods Softw.20041966736922102221
MäkeläMNeittaanmakiPNonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control1992SingaporeWorld Scientific
Mäkelä, M., Karmitsa, N., Wilppu, O.: Multiobjective proximal bundle method for nonsmooth optimization. TUCS Technical Report, No. 1120, Turku Optimization Group (2014)
CocchiGLapucciMMansuetoPPareto front approximation through a multi-objective augmented Lagrangian methodEURO J. Comput. Optim.202191000084397740
MiettinenKNonlinear Multiobjective Optimization1999New YorkSpringer
HanSPA globally convergent method for nonlinear programmingJ. Optim. Theory Appl.197722297309456497
FukudaEHDrummondLGInexact projected gradient method for vector optimizationComput. Optim. Appl.2013544734933029305
DrummondLGA Projected gradient method for vector optimization problemsComput. Optim. Appl.2004285292049673
FukudaEHDrummondLGOn the convergence of the projected gradient method for vector optimizationOptimization2011608–9100910212860289
DolanEDMoréJJBenchmarking optimization software with performance profilesMath. Program.2002912012131875515
PangLPMengFYYangJSA class of infeasible proximal bundle methods for nonsmooth nonconvex multi-objective optimization problemsJ. Global Optim.2023858919154559031
Andrei, N.: Modern Numerical Nonlinear Optimization. Springer (2022)
BurkeJVLewisASOvertonMLA robust gradient sampling algorithm for nonsmooth, nonconvex optimizationSIAM J. Control. Optim.2005157517792142859
BandyopadhyaySPalSKArunaBMultiobjective GAs, quantitative indices, and pattern classificationIEEE Trans. Syst. Man Cybern Part B (Cybern)200434520882099
Hoseini MonjeziNNobakhtianSA proximal bundle-based algorithm for nonsmooth constrained multiobjective optimization problems with inexact dataNumer. Algorithms2022896376744362991
AubinJ-PLipschitz behavior of solutions to convex minimization problemsMath. Oper. Res.1984987111736641
FliegeJSvaiterBFSteepest descent methods for multicriteria optimizationMath. Methods Oper. Res.2000514794941778656
ClarkeFHFunctional Analysis, Calculus of Variations and Optimal Control2013LondonSpringer
NocedalJWrightSJNumerical Optimization20062BerlinSpringer-Verlag
ChanWLHuangLRNgKFOn generalized second-order derivatives and Taylor expansions in nonsmooth optimizationSIAM J. Control. Optim.19943235916111269984
MukaiHAlgorithms for multicriterion optimizationIEEE Trans. Autom. Control1980252177186567375
CharalambousCConnARAn efficient method to solve the minimax problem directlySIAM J. Numer. Anal.1978151162187471301
EhrgottMMulticriteria Optimization2005BerlinSpringer
MengKWLiMHYaoWFYangXQLipschitz-like property relative to a set and the generalized Mordukhovich criterionMath. Program.20211894554894306081
Lukšan, L., Vlček., J.: Test problems for nonsmooth unconstrained and linearly constrained optimization. Technical report, No. 798, Academy of Sciences of the Czech Republic (2000)
Jin, Y., Olhofer, M., Sendhoff, B.: Dynamic weighted aggregation for evolutionary multiobjective opti- mization: Why does it work and how? In: Proceedings of the genetic and evolutionary computation conference, 1042–1049 (2001)
MorovatiVPourkarimiLExtension of Zoutendijk method for solving constrained multiobjective optimization problemsEur. J. Oper. Res.201927344573863513
FliegeJVazAIFA method for constrained multiobjective optimization based on SQP techniquesSIAM J. Optim.2016264209121193556811
MordukhovichBSVariational Analysis and Generalized Differentiation I: Basic Theory2013ChamSpringer
RockafellarRTWetsRJBVariational Analysis1998BerlinSpringer
ClarkeFHOptimization and Nonsmooth Analysis1983New YorkJohn Wiley
CocchiGLapucciMAn augmented Lagrangian algorithm for multi-objective optimizationComput. Optim. Appl.202077129564123858
M Mäkelä (608_CR46) 1992
J-P Aubin (608_CR3) 1984; 9
608_CR44
608_CR45
K Deb (608_CR21) 2005
SP Han (608_CR33) 1977; 22
J Koushki (608_CR40) 2022; 83
FE Curtis (608_CR17) 2013; 28
V Morovati (608_CR48) 2019; 273
RT Rockafellar (608_CR53) 1998
KC Kiwiel (608_CR37) 1985
J Nocedal (608_CR51) 2006
608_CR41
J Nocedal (608_CR50) 1980; 35
608_CR1
S Bandyopadhyay (608_CR5) 2004; 34
608_CR6
H Mukai (608_CR49) 1980; 25
ED Dolan (608_CR25) 2002; 91
K Deb (608_CR20) 2001
EH Fukuda (608_CR30) 2011; 60
AL Custodio (608_CR18) 2011; 21
RH Byrd (608_CR9) 2012; 133
FE Curtis (608_CR16) 2012; 22
EH Fukuda (608_CR31) 2020; 69
MAT Ansary (608_CR2) 2020; 64
WL Chan (608_CR10) 1994; 32
M Haarala (608_CR34) 2004; 19
K Miettinen (608_CR43) 1999
G Eichfelder (608_CR24) 2008
EH Fukuda (608_CR29) 2013; 54
FH Clarke (608_CR12) 2013
JV Burke (608_CR8) 2005; 15
BS Mordukhovich (608_CR47) 2013
N Hoseini Monjezi (608_CR35) 2022; 89
G Cocchi (608_CR14) 2020; 77
KC Kiwiel (608_CR38) 2007; 18
A Bagirov (608_CR4) 2014
KW Meng (608_CR42) 2021; 189
608_CR39
J Fliege (608_CR26) 2009; 20
608_CR36
M Ehrgott (608_CR23) 2005
EH Fukuda (608_CR32) 2016; 24
G Cocchi (608_CR15) 2021; 9
K Deb (608_CR19) 2001
FH Clarke (608_CR13) 1983
J Fliege (608_CR27) 2000; 51
LP Pang (608_CR52) 2023; 85
LG Drummond (608_CR22) 2004; 28
H Bonnel (608_CR7) 2005; 15
J Fliege (608_CR28) 2016; 26
C Charalambous (608_CR11) 1978; 15
References_xml – reference: EhrgottMMulticriteria Optimization2005BerlinSpringer
– reference: Jin, Y., Olhofer, M., Sendhoff, B.: Dynamic weighted aggregation for evolutionary multiobjective opti- mization: Why does it work and how? In: Proceedings of the genetic and evolutionary computation conference, 1042–1049 (2001)
– reference: Lukšan, L., Vlček., J.: Test problems for nonsmooth unconstrained and linearly constrained optimization. Technical report, No. 798, Academy of Sciences of the Czech Republic (2000)
– reference: BurkeJVLewisASOvertonMLA robust gradient sampling algorithm for nonsmooth, nonconvex optimizationSIAM J. Control. Optim.2005157517792142859
– reference: NocedalJWrightSJNumerical Optimization20062BerlinSpringer-Verlag
– reference: RockafellarRTWetsRJBVariational Analysis1998BerlinSpringer
– reference: Mäkelä, M., Karmitsa, N., Wilppu, O.: Multiobjective proximal bundle method for nonsmooth optimization. TUCS Technical Report, No. 1120, Turku Optimization Group (2014)
– reference: MengKWLiMHYaoWFYangXQLipschitz-like property relative to a set and the generalized Mordukhovich criterionMath. Program.20211894554894306081
– reference: Beck, A.: Introduction to Nonlinear Optimization. MOS-SIAM Series in Optimization (2014)
– reference: ChanWLHuangLRNgKFOn generalized second-order derivatives and Taylor expansions in nonsmooth optimizationSIAM J. Control. Optim.19943235916111269984
– reference: MukaiHAlgorithms for multicriterion optimizationIEEE Trans. Autom. Control1980252177186567375
– reference: KiwielKCConvergence of the gradient sampling algorithm for nonsmooth nonconvex optimizationSIAM J. Optim.2007183793882338443
– reference: CustodioALMadeiraJFVazAIVicenteLNDirect multisearch for multiobjective optimizationSIAM J. Optim.201121110911402837565
– reference: DebKPratapAMeyarivanTZitzlerEThieleLDebKCoello CoelloCACorneDConstrained test problems for multi-objective evolutionary optimizationEvolutionary Multi-Criterion Optimization2001BerlinSpringer284298
– reference: DebKThieleLLaumannsMZitzlerEScalable Test Problems for Evolutionary Multiobjective Optimization2005LondonSpringer
– reference: FukudaEHDrummondLGInexact projected gradient method for vector optimizationComput. Optim. Appl.2013544734933029305
– reference: BonnelHIusemANSvaiterBFProximal methods in vector optimizationSIAM J. Optim.20051549539702178482
– reference: DrummondLGA Projected gradient method for vector optimization problemsComput. Optim. Appl.2004285292049673
– reference: CocchiGLapucciMMansuetoPPareto front approximation through a multi-objective augmented Lagrangian methodEURO J. Comput. Optim.202191000084397740
– reference: Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers. TIK Report 214, ETH Zurich (2006)
– reference: HaaralaMMiettinenKMäkeläMMNew limited memory bundle method for large-scale nonsmooth optimizationOptim. Methods Softw.20041966736922102221
– reference: KiwielKCMethods of Descent for Nondifferentiable Optimization1985BerlinSpringer-Verlag
– reference: MiettinenKNonlinear Multiobjective Optimization1999New YorkSpringer
– reference: Andrei, N.: Modern Numerical Nonlinear Optimization. Springer (2022)
– reference: ByrdRHLopez-CalvaGNocedalJA line search exact penalty method using steering rulesMath. Program.201213339732921091
– reference: DolanEDMoréJJBenchmarking optimization software with performance profilesMath. Program.2002912012131875515
– reference: EichfelderGAdaptive Scalarization Methods in Multiobjective Optimization2008BerlinSpringer
– reference: BandyopadhyaySPalSKArunaBMultiobjective GAs, quantitative indices, and pattern classificationIEEE Trans. Syst. Man Cybern Part B (Cybern)200434520882099
– reference: ClarkeFHFunctional Analysis, Calculus of Variations and Optimal Control2013LondonSpringer
– reference: FukudaEHDrummondLGRauppFMAn external penalty-type method for multicriteriaTOP2016244935133509465
– reference: MordukhovichBSVariational Analysis and Generalized Differentiation I: Basic Theory2013ChamSpringer
– reference: MäkeläMNeittaanmakiPNonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control1992SingaporeWorld Scientific
– reference: Mäkelä, M., Montonen, O.: New multiobjective proximal bundle method with scaled improvement function. In: Bagirov, A., Gaudioso, M., Karmitsa, N., Mäkelä, M., Taheri, S. (eds). Numerical Nonsmooth Optimization. Springer (2020)
– reference: MorovatiVPourkarimiLExtension of Zoutendijk method for solving constrained multiobjective optimization problemsEur. J. Oper. Res.201927344573863513
– reference: AubinJ-PLipschitz behavior of solutions to convex minimization problemsMath. Oper. Res.1984987111736641
– reference: CocchiGLapucciMAn augmented Lagrangian algorithm for multi-objective optimizationComput. Optim. Appl.202077129564123858
– reference: CurtisFEQueXAn adaptive gradient sampling algorithm for non-smooth optimizationOptim. Methods Softw.2013286130213243175468
– reference: FliegeJSvaiterBFSteepest descent methods for multicriteria optimizationMath. Methods Oper. Res.2000514794941778656
– reference: BagirovAKarmitsaNMäkeläMMIntroduction to Nonsmooth Optimization: Theory, Practice and Software2014HeidelbergSpringer
– reference: DebKMulti-objective Optimization Using Evolutionary Algorithms2001New YorkJohn Wiley & Sons
– reference: HanSPA globally convergent method for nonlinear programmingJ. Optim. Theory Appl.197722297309456497
– reference: ClarkeFHOptimization and Nonsmooth Analysis1983New YorkJohn Wiley
– reference: NocedalJUpdating quasi-Newton matrices with limited storageMath. Comput.198035151773782572855
– reference: FliegeJDrummondLGSvaiterBFNewton’s method for multiobjective optimizationSIAM J. Optim.2009206026262515788
– reference: KoushkiJMiettinenKSoleimani-damanehMLR-NIMBUS: an interactive algorithm for uncertain multiobjective optimization with lightly robust efficient solutionsJ. Global Optim.2022838438634453651
– reference: FukudaEHDrummondLGOn the convergence of the projected gradient method for vector optimizationOptimization2011608–9100910212860289
– reference: FliegeJVazAIFA method for constrained multiobjective optimization based on SQP techniquesSIAM J. Optim.2016264209121193556811
– reference: PangLPMengFYYangJSA class of infeasible proximal bundle methods for nonsmooth nonconvex multi-objective optimization problemsJ. Global Optim.2023858919154559031
– reference: CharalambousCConnARAn efficient method to solve the minimax problem directlySIAM J. Numer. Anal.1978151162187471301
– reference: FukudaEHDrummondLGRauppFMA barrier-type method for multiobjective optimizationOptimization20206911247124874169272
– reference: Hoseini MonjeziNNobakhtianSA proximal bundle-based algorithm for nonsmooth constrained multiobjective optimization problems with inexact dataNumer. Algorithms2022896376744362991
– reference: CurtisFEOvertonMLA sequential quadratic programming algorithm for nonconvex, nonsmooth constrained optimizationSIAM J. Optim.2012224745002968863
– reference: AnsaryMATPandaGA sequential quadratic programming method for constrained multiobjective optimization problemsJ. Appl. Math. Comput.20206413793974149406
– ident: 608_CR6
  doi: 10.1137/1.9781611973655
– volume: 26
  start-page: 2091
  issue: 4
  year: 2016
  ident: 608_CR28
  publication-title: SIAM J. Optim.
  doi: 10.1137/15M1016424
– volume: 83
  start-page: 843
  year: 2022
  ident: 608_CR40
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-021-01118-8
– ident: 608_CR45
  doi: 10.1007/978-3-030-34910-3_13
– volume-title: Numerical Optimization
  year: 2006
  ident: 608_CR51
– ident: 608_CR1
  doi: 10.1007/978-3-031-08720-2
– volume: 18
  start-page: 379
  year: 2007
  ident: 608_CR38
  publication-title: SIAM J. Optim.
  doi: 10.1137/050639673
– volume-title: Introduction to Nonsmooth Optimization: Theory, Practice and Software
  year: 2014
  ident: 608_CR4
  doi: 10.1007/978-3-319-08114-4
– volume: 77
  start-page: 29
  issue: 1
  year: 2020
  ident: 608_CR14
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-020-00204-z
– volume-title: Variational Analysis and Generalized Differentiation I: Basic Theory
  year: 2013
  ident: 608_CR47
– volume: 15
  start-page: 162
  issue: 1
  year: 1978
  ident: 608_CR11
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0715011
– ident: 608_CR39
– volume: 273
  start-page: 44
  year: 2019
  ident: 608_CR48
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2018.08.018
– volume: 189
  start-page: 455
  year: 2021
  ident: 608_CR42
  publication-title: Math. Program.
  doi: 10.1007/s10107-020-01568-0
– volume: 20
  start-page: 602
  year: 2009
  ident: 608_CR26
  publication-title: SIAM J. Optim.
  doi: 10.1137/08071692X
– volume: 9
  start-page: 87
  year: 1984
  ident: 608_CR3
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.9.1.87
– start-page: 284
  volume-title: Evolutionary Multi-Criterion Optimization
  year: 2001
  ident: 608_CR20
  doi: 10.1007/3-540-44719-9_20
– volume-title: Multicriteria Optimization
  year: 2005
  ident: 608_CR23
– volume: 91
  start-page: 201
  year: 2002
  ident: 608_CR25
  publication-title: Math. Program.
  doi: 10.1007/s101070100263
– volume: 54
  start-page: 473
  year: 2013
  ident: 608_CR29
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-012-9501-z
– volume-title: Scalable Test Problems for Evolutionary Multiobjective Optimization
  year: 2005
  ident: 608_CR21
– ident: 608_CR36
– volume: 35
  start-page: 773
  issue: 151
  year: 1980
  ident: 608_CR50
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1980-0572855-7
– volume: 34
  start-page: 2088
  issue: 5
  year: 2004
  ident: 608_CR5
  publication-title: IEEE Trans. Syst. Man Cybern Part B (Cybern)
  doi: 10.1109/TSMCB.2004.834438
– volume: 69
  start-page: 2471
  issue: 11
  year: 2020
  ident: 608_CR31
  publication-title: Optimization
  doi: 10.1080/02331934.2019.1576667
– volume: 89
  start-page: 637
  year: 2022
  ident: 608_CR35
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-021-01128-3
– volume: 64
  start-page: 379
  issue: 1
  year: 2020
  ident: 608_CR2
  publication-title: J. Appl. Math. Comput.
  doi: 10.1007/s12190-020-01359-y
– volume: 15
  start-page: 751
  year: 2005
  ident: 608_CR8
  publication-title: SIAM J. Control. Optim.
  doi: 10.1137/030601296
– volume: 60
  start-page: 1009
  issue: 8–9
  year: 2011
  ident: 608_CR30
  publication-title: Optimization
  doi: 10.1080/02331934.2010.522710
– volume: 22
  start-page: 474
  year: 2012
  ident: 608_CR16
  publication-title: SIAM J. Optim.
  doi: 10.1137/090780201
– volume: 85
  start-page: 891
  year: 2023
  ident: 608_CR52
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-022-01242-z
– volume: 28
  start-page: 1302
  issue: 6
  year: 2013
  ident: 608_CR17
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2012.714781
– volume: 22
  start-page: 297
  year: 1977
  ident: 608_CR33
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00932858
– volume-title: Nonlinear Multiobjective Optimization
  year: 1999
  ident: 608_CR43
– volume-title: Multi-objective Optimization Using Evolutionary Algorithms
  year: 2001
  ident: 608_CR19
– volume-title: Optimization and Nonsmooth Analysis
  year: 1983
  ident: 608_CR13
– volume-title: Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control
  year: 1992
  ident: 608_CR46
  doi: 10.1142/1493
– volume: 19
  start-page: 673
  issue: 6
  year: 2004
  ident: 608_CR34
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556780410001689225
– volume-title: Functional Analysis, Calculus of Variations and Optimal Control
  year: 2013
  ident: 608_CR12
  doi: 10.1007/978-1-4471-4820-3
– ident: 608_CR44
– volume: 51
  start-page: 479
  year: 2000
  ident: 608_CR27
  publication-title: Math. Methods Oper. Res.
  doi: 10.1007/s001860000043
– volume: 15
  start-page: 953
  issue: 4
  year: 2005
  ident: 608_CR7
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623403429093
– volume: 32
  start-page: 591
  issue: 3
  year: 1994
  ident: 608_CR10
  publication-title: SIAM J. Control. Optim.
  doi: 10.1137/S0363012992227423
– volume: 25
  start-page: 177
  issue: 2
  year: 1980
  ident: 608_CR49
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1980.1102298
– volume: 9
  start-page: 100008
  year: 2021
  ident: 608_CR15
  publication-title: EURO J. Comput. Optim.
  doi: 10.1016/j.ejco.2021.100008
– volume: 133
  start-page: 39
  year: 2012
  ident: 608_CR9
  publication-title: Math. Program.
  doi: 10.1007/s10107-010-0408-0
– ident: 608_CR41
– volume-title: Methods of Descent for Nondifferentiable Optimization
  year: 1985
  ident: 608_CR37
  doi: 10.1007/BFb0074500
– volume-title: Variational Analysis
  year: 1998
  ident: 608_CR53
  doi: 10.1007/978-3-642-02431-3
– volume: 21
  start-page: 1109
  year: 2011
  ident: 608_CR18
  publication-title: SIAM J. Optim.
  doi: 10.1137/10079731X
– volume: 28
  start-page: 5
  year: 2004
  ident: 608_CR22
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/B:COAP.0000018877.86161.8b
– volume-title: Adaptive Scalarization Methods in Multiobjective Optimization
  year: 2008
  ident: 608_CR24
  doi: 10.1007/978-3-540-79159-1
– volume: 24
  start-page: 493
  year: 2016
  ident: 608_CR32
  publication-title: TOP
  doi: 10.1007/s11750-015-0406-8
SSID ssj0009732
Score 2.391129
Snippet In this paper, we propose a method for solving constrained nonsmooth multiobjective optimization problems which is based on a Sequential Quadratic Programming...
SourceID crossref
springer
SourceType Index Database
Publisher
StartPage 729
SubjectTerms Convex and Discrete Geometry
Management Science
Mathematics
Mathematics and Statistics
Operations Research
Operations Research/Decision Theory
Optimization
Statistics
Title MultiSQP-GS: a sequential quadratic programming algorithm via gradient sampling for nonsmooth constrained multiobjective optimization
URI https://link.springer.com/article/10.1007/s10589-024-00608-1
Volume 89
WOSCitedRecordID wos001325685100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: 7WY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: M0C
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: P5Z
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: K7-
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: M7S
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: M2P
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gcIADjwFivJQDN4jUtWnTcEOIwQGmwQBxq_LkIbrBXv-A_42TdmyTEBIc20ZWZDu2q3z-jNAhdaRUKYtIlNiAUMYkEYG0xNjESsWljLTnmb1izWb6-MhbZVNYf4x2H19J-kg91ewWO3hPSIkjEYF_n3m0AOkudQMbbtsPE6pd5seSBTxMCKTzqGyV-VnGbDqavQv1Kaax-r_NraGVsqTEp4UPrKM506mi5SmiQXi6_mZn7VfRkqswC4LmDfTpW3DbNy1y0T7BAhfYajj3b_hjKLRzEIVLFFcOwrB4e-r2XgbPOR69CAyvHWZsgPvCYdPhO1TBuAO-nHfBCbBy9acbQ2E09uDFrnwtYizuQrTKyzbQTXTfOL87uyTlbAaiIKkPiEtqYaDB_nVJmU6MZLExsZaWW6gglTVWKJrGqQg1xIQUqjZR11az0AouuI62UAX2YrYR1lJRozkFEYxyFXNrRaBoHEsRJ0KlNXQ0NlH2XlBwZBOyZaf3DPSeeb1n9Ro6HlsoK49j_5flO39bvouWQmdkj2fZQ5VBb2j20aIagdV6B94PvwAq5dzU
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB68QH3wFm_z4JsGum3aNL6JeOG6qKviW8npgevq7uo_8H87SbseIII-tg1DmJnMTMk33wBsME9KlfOEJpmLKONcURkpR63LnNJCqcQEntk6bzTy62txWjWFdfto9_6VZIjUX5rdUg_viRn1JCL47zMIwwwzlmfMP29efVLt8jCWLBJxRjGdJ1WrzM8yvqej73ehIcXsT_5vc1MwUZWUZKf0gWkYsI8zMP6FaBCfTj7YWbszMOYrzJKgeRbeQgtu8-yUHjS3iSQlthrP_QN5fpHGO4gmFYqrhcKIfLhpd-56ty3yeicJvvaYsR7pSo9Nx-9YBZNH9OVWG52AaF9_-jEU1pAAXmyr-zLGkjZGq1bVBjoHl_t7F7uHtJrNQDUm9R71SS2ODNq_phg3mVU8tTY1ygmHFaR21knN8jSXscGYkGPVJmvGGR47KaQwyTwM4V7sAhCjNLNGMBTBmdCpcE5GmqWpkmkmdb4Im30TFU8lBUfxSbbs9V6g3oug96K2CFt9CxXVcez-snzpb8vXYfTw4qRe1I8ax8swFnuDB2zLCgz1Oi92FUb0K1qwsxZ88h2OIN-4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5BmabyMKAbojDAD7wxa2nixDFvaKMwbVSdytDeIv8cRUsz2mz_Af83ZyelnYQmTTwmsU7W3eXuLH_3HcA75kmpcp7QJHMRZZwrKiPlqHWZU1oolZjAM3vCR6P8_FyM17r4A9p9eSXZ9DR4lqZZvX9l3P5a41vqoT4xo55QBM9BD-ER80B6f16ffF_R7vIwoiwScUYxtSdt28y_ZdxOTbfvRUO6GT75_40-ha221CQfG994Bg_srAeP1wgI8enrX9bWRQ-6vvJsiJu34XdozZ2cjunnyQciSYO5xnhwSX5dS-MdR5MW3VWiMCIvL6r5tP5RkpupJPjaY8lqspAes47fsTomM_TxskLnINrXpX48hTUkgBor9bOJvaTCKFa27aE7cDb89O3gC21nNlCNyb6mPtnFkUG_GCjGTWYVT61NjXLCYWWpnXVSszzNZWwwVuRYzcmBcYbHTgopTPIcOrgX-wKIUZpZIxiK4EzoVDgnI83SVMk0kzrvw_uluYqrhpqjWJEwe70XqPci6L0Y9GFvaa2i_U0Xdyx_eb_lb2FzfDgsTo5Gx6-gG3t7B8jLLnTq-bV9DRv6Bg04fxPc8w9UkOic
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MultiSQP-GS%3A+a+sequential+quadratic+programming+algorithm+via+gradient+sampling+for+nonsmooth+constrained+multiobjective+optimization&rft.jtitle=Computational+optimization+and+applications&rft.au=Rashidi%2C+Mehri&rft.au=Soleimani-damaneh%2C+Majid&rft.date=2024-12-01&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=89&rft.issue=3&rft.spage=729&rft.epage=767&rft_id=info:doi/10.1007%2Fs10589-024-00608-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10589_024_00608_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon