MultiSQP-GS: a sequential quadratic programming algorithm via gradient sampling for nonsmooth constrained multiobjective optimization
In this paper, we propose a method for solving constrained nonsmooth multiobjective optimization problems which is based on a Sequential Quadratic Programming (SQP) type approach and the Gradient Sampling (GS) technique. We consider the multiobjective problems with noncovex and nonsmooth objective a...
Uložené v:
| Vydané v: | Computational optimization and applications Ročník 89; číslo 3; s. 729 - 767 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.12.2024
|
| Predmet: | |
| ISSN: | 0926-6003, 1573-2894 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this paper, we propose a method for solving constrained nonsmooth multiobjective optimization problems which is based on a Sequential Quadratic Programming (SQP) type approach and the Gradient Sampling (GS) technique. We consider the multiobjective problems with noncovex and nonsmooth objective and constraint functions. The problem functions are assumed to be locally Lipschitz. Such problems arise in important applications, many having (weak) Pareto solutions at points of nondifferentiability of the problem functions. In our algorithm, a penalty function is applied to regularize the constraints, GS is employed to overcome the subdifferential calculation burden and make the search direction computation effective in nonsmooth regions, and SQP is used for getting a local linearization. We prove the global convergence properties of our algorithm to the stationary points which approximate (weak) Pareto front. Furthermore, we illustrate the ability and efficiency of the proposed method via a MATLAB implementation on several tests problems and compare it with some existing algorithms. |
|---|---|
| AbstractList | In this paper, we propose a method for solving constrained nonsmooth multiobjective optimization problems which is based on a Sequential Quadratic Programming (SQP) type approach and the Gradient Sampling (GS) technique. We consider the multiobjective problems with noncovex and nonsmooth objective and constraint functions. The problem functions are assumed to be locally Lipschitz. Such problems arise in important applications, many having (weak) Pareto solutions at points of nondifferentiability of the problem functions. In our algorithm, a penalty function is applied to regularize the constraints, GS is employed to overcome the subdifferential calculation burden and make the search direction computation effective in nonsmooth regions, and SQP is used for getting a local linearization. We prove the global convergence properties of our algorithm to the stationary points which approximate (weak) Pareto front. Furthermore, we illustrate the ability and efficiency of the proposed method via a MATLAB implementation on several tests problems and compare it with some existing algorithms. |
| Author | Rashidi, Mehri Soleimani-damaneh, Majid |
| Author_xml | – sequence: 1 givenname: Mehri surname: Rashidi fullname: Rashidi, Mehri organization: Faculty of Mathematics and Computer Science, Amirkabir University of Technology – sequence: 2 givenname: Majid orcidid: 0000-0002-5913-1035 surname: Soleimani-damaneh fullname: Soleimani-damaneh, Majid email: m.soleimani.d@ut.ac.ir, soleimani_d@yahoo.com organization: School of Mathematics, Statistics, and Computer Science, College of Science, University of Tehran |
| BookMark | eNp9kMtOwzAQRS0EEm3hB1j5Bwy283DCDlVQkIoAFdbR1I_UVRK3tlsJ9vw3LmXNakYz985cnTE6HdygEbpi9JpRKm4Co0VVE8pzQmlJK8JO0IgVIiO8qvNTNKI1L0lJaXaOxiGsKaW1yPgIfT_vumgXb69ktrjFgIPe7vQQLXR4uwPlIVqJN961HvreDi2GrnXexlWP9xZwGiub9DhAv-kOe-M8TuFC71xcYZm66MEOWuH-8Mkt11pGu9fYbaLt7Vd64IYLdGagC_ryr07Qx8P9-_SRzF9mT9O7OZE855FUuWCcKimBLXOhSr0UhdaFWpraFFkmjTYg86qogCtRiSrnGTBllOAGaqhVNkH8eFd6F4LXptl424P_bBhtDiCbI8gmgWx-QTYsmbKjKSTx0GrfrN3ODynnf64f52h9fw |
| Cites_doi | 10.1137/1.9781611973655 10.1137/15M1016424 10.1007/s10898-021-01118-8 10.1007/978-3-030-34910-3_13 10.1007/978-3-031-08720-2 10.1137/050639673 10.1007/978-3-319-08114-4 10.1007/s10589-020-00204-z 10.1137/0715011 10.1016/j.ejor.2018.08.018 10.1007/s10107-020-01568-0 10.1137/08071692X 10.1287/moor.9.1.87 10.1007/3-540-44719-9_20 10.1007/s101070100263 10.1007/s10589-012-9501-z 10.1090/S0025-5718-1980-0572855-7 10.1109/TSMCB.2004.834438 10.1080/02331934.2019.1576667 10.1007/s11075-021-01128-3 10.1007/s12190-020-01359-y 10.1137/030601296 10.1080/02331934.2010.522710 10.1137/090780201 10.1007/s10898-022-01242-z 10.1080/10556788.2012.714781 10.1007/BF00932858 10.1142/1493 10.1080/10556780410001689225 10.1007/978-1-4471-4820-3 10.1007/s001860000043 10.1137/S1052623403429093 10.1137/S0363012992227423 10.1109/TAC.1980.1102298 10.1016/j.ejco.2021.100008 10.1007/s10107-010-0408-0 10.1007/BFb0074500 10.1007/978-3-642-02431-3 10.1137/10079731X 10.1023/B:COAP.0000018877.86161.8b 10.1007/978-3-540-79159-1 10.1007/s11750-015-0406-8 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s10589-024-00608-1 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Mathematics |
| EISSN | 1573-2894 |
| EndPage | 767 |
| ExternalDocumentID | 10_1007_s10589_024_00608_1 |
| GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 7WY 88I 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHQJS AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EBU EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9R PF0 PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 ZL0 ZMTXR ZWQNP ~8M ~EX AAYXX ABFSG ABRTQ ACSTC AEZWR AFFHD AFHIU AHWEU AIXLP CITATION PQGLB |
| ID | FETCH-LOGICAL-c242t-847120dcca1b47d6eb75ee5dbf9f533cfefac4858a2d7878423a1dfd72fa9a9d3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001325685100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0926-6003 |
| IngestDate | Sat Nov 29 01:51:32 EST 2025 Thu May 22 04:31:18 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Gradient Sampling (GS) Nonconvex optimization 49J52 Multiobjective programming 90C29 Nonsmooth optimization 90C26 Exact penalization Sequential Quadratic Programming (SQP) Constrained optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c242t-847120dcca1b47d6eb75ee5dbf9f533cfefac4858a2d7878423a1dfd72fa9a9d3 |
| ORCID | 0000-0002-5913-1035 |
| PageCount | 39 |
| ParticipantIDs | crossref_primary_10_1007_s10589_024_00608_1 springer_journals_10_1007_s10589_024_00608_1 |
| PublicationCentury | 2000 |
| PublicationDate | 20241200 2024-12-00 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 20241200 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Computational optimization and applications |
| PublicationTitleAbbrev | Comput Optim Appl |
| PublicationYear | 2024 |
| Publisher | Springer US |
| Publisher_xml | – name: Springer US |
| References | DebKThieleLLaumannsMZitzlerEScalable Test Problems for Evolutionary Multiobjective Optimization2005LondonSpringer BagirovAKarmitsaNMäkeläMMIntroduction to Nonsmooth Optimization: Theory, Practice and Software2014HeidelbergSpringer Beck, A.: Introduction to Nonlinear Optimization. MOS-SIAM Series in Optimization (2014) NocedalJUpdating quasi-Newton matrices with limited storageMath. Comput.198035151773782572855 FukudaEHDrummondLGRauppFMA barrier-type method for multiobjective optimizationOptimization20206911247124874169272 CurtisFEOvertonMLA sequential quadratic programming algorithm for nonconvex, nonsmooth constrained optimizationSIAM J. Optim.2012224745002968863 Mäkelä, M., Montonen, O.: New multiobjective proximal bundle method with scaled improvement function. In: Bagirov, A., Gaudioso, M., Karmitsa, N., Mäkelä, M., Taheri, S. (eds). Numerical Nonsmooth Optimization. Springer (2020) EichfelderGAdaptive Scalarization Methods in Multiobjective Optimization2008BerlinSpringer AnsaryMATPandaGA sequential quadratic programming method for constrained multiobjective optimization problemsJ. Appl. Math. Comput.20206413793974149406 ByrdRHLopez-CalvaGNocedalJA line search exact penalty method using steering rulesMath. Program.201213339732921091 CurtisFEQueXAn adaptive gradient sampling algorithm for non-smooth optimizationOptim. Methods Softw.2013286130213243175468 BonnelHIusemANSvaiterBFProximal methods in vector optimizationSIAM J. Optim.20051549539702178482 DebKPratapAMeyarivanTZitzlerEThieleLDebKCoello CoelloCACorneDConstrained test problems for multi-objective evolutionary optimizationEvolutionary Multi-Criterion Optimization2001BerlinSpringer284298 CustodioALMadeiraJFVazAIVicenteLNDirect multisearch for multiobjective optimizationSIAM J. Optim.201121110911402837565 KiwielKCConvergence of the gradient sampling algorithm for nonsmooth nonconvex optimizationSIAM J. Optim.2007183793882338443 DebKMulti-objective Optimization Using Evolutionary Algorithms2001New YorkJohn Wiley & Sons KiwielKCMethods of Descent for Nondifferentiable Optimization1985BerlinSpringer-Verlag FukudaEHDrummondLGRauppFMAn external penalty-type method for multicriteriaTOP2016244935133509465 FliegeJDrummondLGSvaiterBFNewton’s method for multiobjective optimizationSIAM J. Optim.2009206026262515788 KoushkiJMiettinenKSoleimani-damanehMLR-NIMBUS: an interactive algorithm for uncertain multiobjective optimization with lightly robust efficient solutionsJ. Global Optim.2022838438634453651 Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers. TIK Report 214, ETH Zurich (2006) HaaralaMMiettinenKMäkeläMMNew limited memory bundle method for large-scale nonsmooth optimizationOptim. Methods Softw.20041966736922102221 MäkeläMNeittaanmakiPNonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control1992SingaporeWorld Scientific Mäkelä, M., Karmitsa, N., Wilppu, O.: Multiobjective proximal bundle method for nonsmooth optimization. TUCS Technical Report, No. 1120, Turku Optimization Group (2014) CocchiGLapucciMMansuetoPPareto front approximation through a multi-objective augmented Lagrangian methodEURO J. Comput. Optim.202191000084397740 MiettinenKNonlinear Multiobjective Optimization1999New YorkSpringer HanSPA globally convergent method for nonlinear programmingJ. Optim. Theory Appl.197722297309456497 FukudaEHDrummondLGInexact projected gradient method for vector optimizationComput. Optim. Appl.2013544734933029305 DrummondLGA Projected gradient method for vector optimization problemsComput. Optim. Appl.2004285292049673 FukudaEHDrummondLGOn the convergence of the projected gradient method for vector optimizationOptimization2011608–9100910212860289 DolanEDMoréJJBenchmarking optimization software with performance profilesMath. Program.2002912012131875515 PangLPMengFYYangJSA class of infeasible proximal bundle methods for nonsmooth nonconvex multi-objective optimization problemsJ. Global Optim.2023858919154559031 Andrei, N.: Modern Numerical Nonlinear Optimization. Springer (2022) BurkeJVLewisASOvertonMLA robust gradient sampling algorithm for nonsmooth, nonconvex optimizationSIAM J. Control. Optim.2005157517792142859 BandyopadhyaySPalSKArunaBMultiobjective GAs, quantitative indices, and pattern classificationIEEE Trans. Syst. Man Cybern Part B (Cybern)200434520882099 Hoseini MonjeziNNobakhtianSA proximal bundle-based algorithm for nonsmooth constrained multiobjective optimization problems with inexact dataNumer. Algorithms2022896376744362991 AubinJ-PLipschitz behavior of solutions to convex minimization problemsMath. Oper. Res.1984987111736641 FliegeJSvaiterBFSteepest descent methods for multicriteria optimizationMath. Methods Oper. Res.2000514794941778656 ClarkeFHFunctional Analysis, Calculus of Variations and Optimal Control2013LondonSpringer NocedalJWrightSJNumerical Optimization20062BerlinSpringer-Verlag ChanWLHuangLRNgKFOn generalized second-order derivatives and Taylor expansions in nonsmooth optimizationSIAM J. Control. Optim.19943235916111269984 MukaiHAlgorithms for multicriterion optimizationIEEE Trans. Autom. Control1980252177186567375 CharalambousCConnARAn efficient method to solve the minimax problem directlySIAM J. Numer. Anal.1978151162187471301 EhrgottMMulticriteria Optimization2005BerlinSpringer MengKWLiMHYaoWFYangXQLipschitz-like property relative to a set and the generalized Mordukhovich criterionMath. Program.20211894554894306081 Lukšan, L., Vlček., J.: Test problems for nonsmooth unconstrained and linearly constrained optimization. Technical report, No. 798, Academy of Sciences of the Czech Republic (2000) Jin, Y., Olhofer, M., Sendhoff, B.: Dynamic weighted aggregation for evolutionary multiobjective opti- mization: Why does it work and how? In: Proceedings of the genetic and evolutionary computation conference, 1042–1049 (2001) MorovatiVPourkarimiLExtension of Zoutendijk method for solving constrained multiobjective optimization problemsEur. J. Oper. Res.201927344573863513 FliegeJVazAIFA method for constrained multiobjective optimization based on SQP techniquesSIAM J. Optim.2016264209121193556811 MordukhovichBSVariational Analysis and Generalized Differentiation I: Basic Theory2013ChamSpringer RockafellarRTWetsRJBVariational Analysis1998BerlinSpringer ClarkeFHOptimization and Nonsmooth Analysis1983New YorkJohn Wiley CocchiGLapucciMAn augmented Lagrangian algorithm for multi-objective optimizationComput. Optim. Appl.202077129564123858 M Mäkelä (608_CR46) 1992 J-P Aubin (608_CR3) 1984; 9 608_CR44 608_CR45 K Deb (608_CR21) 2005 SP Han (608_CR33) 1977; 22 J Koushki (608_CR40) 2022; 83 FE Curtis (608_CR17) 2013; 28 V Morovati (608_CR48) 2019; 273 RT Rockafellar (608_CR53) 1998 KC Kiwiel (608_CR37) 1985 J Nocedal (608_CR51) 2006 608_CR41 J Nocedal (608_CR50) 1980; 35 608_CR1 S Bandyopadhyay (608_CR5) 2004; 34 608_CR6 H Mukai (608_CR49) 1980; 25 ED Dolan (608_CR25) 2002; 91 K Deb (608_CR20) 2001 EH Fukuda (608_CR30) 2011; 60 AL Custodio (608_CR18) 2011; 21 RH Byrd (608_CR9) 2012; 133 FE Curtis (608_CR16) 2012; 22 EH Fukuda (608_CR31) 2020; 69 MAT Ansary (608_CR2) 2020; 64 WL Chan (608_CR10) 1994; 32 M Haarala (608_CR34) 2004; 19 K Miettinen (608_CR43) 1999 G Eichfelder (608_CR24) 2008 EH Fukuda (608_CR29) 2013; 54 FH Clarke (608_CR12) 2013 JV Burke (608_CR8) 2005; 15 BS Mordukhovich (608_CR47) 2013 N Hoseini Monjezi (608_CR35) 2022; 89 G Cocchi (608_CR14) 2020; 77 KC Kiwiel (608_CR38) 2007; 18 A Bagirov (608_CR4) 2014 KW Meng (608_CR42) 2021; 189 608_CR39 J Fliege (608_CR26) 2009; 20 608_CR36 M Ehrgott (608_CR23) 2005 EH Fukuda (608_CR32) 2016; 24 G Cocchi (608_CR15) 2021; 9 K Deb (608_CR19) 2001 FH Clarke (608_CR13) 1983 J Fliege (608_CR27) 2000; 51 LP Pang (608_CR52) 2023; 85 LG Drummond (608_CR22) 2004; 28 H Bonnel (608_CR7) 2005; 15 J Fliege (608_CR28) 2016; 26 C Charalambous (608_CR11) 1978; 15 |
| References_xml | – reference: EhrgottMMulticriteria Optimization2005BerlinSpringer – reference: Jin, Y., Olhofer, M., Sendhoff, B.: Dynamic weighted aggregation for evolutionary multiobjective opti- mization: Why does it work and how? In: Proceedings of the genetic and evolutionary computation conference, 1042–1049 (2001) – reference: Lukšan, L., Vlček., J.: Test problems for nonsmooth unconstrained and linearly constrained optimization. Technical report, No. 798, Academy of Sciences of the Czech Republic (2000) – reference: BurkeJVLewisASOvertonMLA robust gradient sampling algorithm for nonsmooth, nonconvex optimizationSIAM J. Control. Optim.2005157517792142859 – reference: NocedalJWrightSJNumerical Optimization20062BerlinSpringer-Verlag – reference: RockafellarRTWetsRJBVariational Analysis1998BerlinSpringer – reference: Mäkelä, M., Karmitsa, N., Wilppu, O.: Multiobjective proximal bundle method for nonsmooth optimization. TUCS Technical Report, No. 1120, Turku Optimization Group (2014) – reference: MengKWLiMHYaoWFYangXQLipschitz-like property relative to a set and the generalized Mordukhovich criterionMath. Program.20211894554894306081 – reference: Beck, A.: Introduction to Nonlinear Optimization. MOS-SIAM Series in Optimization (2014) – reference: ChanWLHuangLRNgKFOn generalized second-order derivatives and Taylor expansions in nonsmooth optimizationSIAM J. Control. Optim.19943235916111269984 – reference: MukaiHAlgorithms for multicriterion optimizationIEEE Trans. Autom. Control1980252177186567375 – reference: KiwielKCConvergence of the gradient sampling algorithm for nonsmooth nonconvex optimizationSIAM J. Optim.2007183793882338443 – reference: CustodioALMadeiraJFVazAIVicenteLNDirect multisearch for multiobjective optimizationSIAM J. Optim.201121110911402837565 – reference: DebKPratapAMeyarivanTZitzlerEThieleLDebKCoello CoelloCACorneDConstrained test problems for multi-objective evolutionary optimizationEvolutionary Multi-Criterion Optimization2001BerlinSpringer284298 – reference: DebKThieleLLaumannsMZitzlerEScalable Test Problems for Evolutionary Multiobjective Optimization2005LondonSpringer – reference: FukudaEHDrummondLGInexact projected gradient method for vector optimizationComput. Optim. Appl.2013544734933029305 – reference: BonnelHIusemANSvaiterBFProximal methods in vector optimizationSIAM J. Optim.20051549539702178482 – reference: DrummondLGA Projected gradient method for vector optimization problemsComput. Optim. Appl.2004285292049673 – reference: CocchiGLapucciMMansuetoPPareto front approximation through a multi-objective augmented Lagrangian methodEURO J. Comput. Optim.202191000084397740 – reference: Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers. TIK Report 214, ETH Zurich (2006) – reference: HaaralaMMiettinenKMäkeläMMNew limited memory bundle method for large-scale nonsmooth optimizationOptim. Methods Softw.20041966736922102221 – reference: KiwielKCMethods of Descent for Nondifferentiable Optimization1985BerlinSpringer-Verlag – reference: MiettinenKNonlinear Multiobjective Optimization1999New YorkSpringer – reference: Andrei, N.: Modern Numerical Nonlinear Optimization. Springer (2022) – reference: ByrdRHLopez-CalvaGNocedalJA line search exact penalty method using steering rulesMath. Program.201213339732921091 – reference: DolanEDMoréJJBenchmarking optimization software with performance profilesMath. Program.2002912012131875515 – reference: EichfelderGAdaptive Scalarization Methods in Multiobjective Optimization2008BerlinSpringer – reference: BandyopadhyaySPalSKArunaBMultiobjective GAs, quantitative indices, and pattern classificationIEEE Trans. Syst. Man Cybern Part B (Cybern)200434520882099 – reference: ClarkeFHFunctional Analysis, Calculus of Variations and Optimal Control2013LondonSpringer – reference: FukudaEHDrummondLGRauppFMAn external penalty-type method for multicriteriaTOP2016244935133509465 – reference: MordukhovichBSVariational Analysis and Generalized Differentiation I: Basic Theory2013ChamSpringer – reference: MäkeläMNeittaanmakiPNonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control1992SingaporeWorld Scientific – reference: Mäkelä, M., Montonen, O.: New multiobjective proximal bundle method with scaled improvement function. In: Bagirov, A., Gaudioso, M., Karmitsa, N., Mäkelä, M., Taheri, S. (eds). Numerical Nonsmooth Optimization. Springer (2020) – reference: MorovatiVPourkarimiLExtension of Zoutendijk method for solving constrained multiobjective optimization problemsEur. J. Oper. Res.201927344573863513 – reference: AubinJ-PLipschitz behavior of solutions to convex minimization problemsMath. Oper. Res.1984987111736641 – reference: CocchiGLapucciMAn augmented Lagrangian algorithm for multi-objective optimizationComput. Optim. Appl.202077129564123858 – reference: CurtisFEQueXAn adaptive gradient sampling algorithm for non-smooth optimizationOptim. Methods Softw.2013286130213243175468 – reference: FliegeJSvaiterBFSteepest descent methods for multicriteria optimizationMath. Methods Oper. Res.2000514794941778656 – reference: BagirovAKarmitsaNMäkeläMMIntroduction to Nonsmooth Optimization: Theory, Practice and Software2014HeidelbergSpringer – reference: DebKMulti-objective Optimization Using Evolutionary Algorithms2001New YorkJohn Wiley & Sons – reference: HanSPA globally convergent method for nonlinear programmingJ. Optim. Theory Appl.197722297309456497 – reference: ClarkeFHOptimization and Nonsmooth Analysis1983New YorkJohn Wiley – reference: NocedalJUpdating quasi-Newton matrices with limited storageMath. Comput.198035151773782572855 – reference: FliegeJDrummondLGSvaiterBFNewton’s method for multiobjective optimizationSIAM J. Optim.2009206026262515788 – reference: KoushkiJMiettinenKSoleimani-damanehMLR-NIMBUS: an interactive algorithm for uncertain multiobjective optimization with lightly robust efficient solutionsJ. Global Optim.2022838438634453651 – reference: FukudaEHDrummondLGOn the convergence of the projected gradient method for vector optimizationOptimization2011608–9100910212860289 – reference: FliegeJVazAIFA method for constrained multiobjective optimization based on SQP techniquesSIAM J. Optim.2016264209121193556811 – reference: PangLPMengFYYangJSA class of infeasible proximal bundle methods for nonsmooth nonconvex multi-objective optimization problemsJ. Global Optim.2023858919154559031 – reference: CharalambousCConnARAn efficient method to solve the minimax problem directlySIAM J. Numer. Anal.1978151162187471301 – reference: FukudaEHDrummondLGRauppFMA barrier-type method for multiobjective optimizationOptimization20206911247124874169272 – reference: Hoseini MonjeziNNobakhtianSA proximal bundle-based algorithm for nonsmooth constrained multiobjective optimization problems with inexact dataNumer. Algorithms2022896376744362991 – reference: CurtisFEOvertonMLA sequential quadratic programming algorithm for nonconvex, nonsmooth constrained optimizationSIAM J. Optim.2012224745002968863 – reference: AnsaryMATPandaGA sequential quadratic programming method for constrained multiobjective optimization problemsJ. Appl. Math. Comput.20206413793974149406 – ident: 608_CR6 doi: 10.1137/1.9781611973655 – volume: 26 start-page: 2091 issue: 4 year: 2016 ident: 608_CR28 publication-title: SIAM J. Optim. doi: 10.1137/15M1016424 – volume: 83 start-page: 843 year: 2022 ident: 608_CR40 publication-title: J. Global Optim. doi: 10.1007/s10898-021-01118-8 – ident: 608_CR45 doi: 10.1007/978-3-030-34910-3_13 – volume-title: Numerical Optimization year: 2006 ident: 608_CR51 – ident: 608_CR1 doi: 10.1007/978-3-031-08720-2 – volume: 18 start-page: 379 year: 2007 ident: 608_CR38 publication-title: SIAM J. Optim. doi: 10.1137/050639673 – volume-title: Introduction to Nonsmooth Optimization: Theory, Practice and Software year: 2014 ident: 608_CR4 doi: 10.1007/978-3-319-08114-4 – volume: 77 start-page: 29 issue: 1 year: 2020 ident: 608_CR14 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-020-00204-z – volume-title: Variational Analysis and Generalized Differentiation I: Basic Theory year: 2013 ident: 608_CR47 – volume: 15 start-page: 162 issue: 1 year: 1978 ident: 608_CR11 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0715011 – ident: 608_CR39 – volume: 273 start-page: 44 year: 2019 ident: 608_CR48 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2018.08.018 – volume: 189 start-page: 455 year: 2021 ident: 608_CR42 publication-title: Math. Program. doi: 10.1007/s10107-020-01568-0 – volume: 20 start-page: 602 year: 2009 ident: 608_CR26 publication-title: SIAM J. Optim. doi: 10.1137/08071692X – volume: 9 start-page: 87 year: 1984 ident: 608_CR3 publication-title: Math. Oper. Res. doi: 10.1287/moor.9.1.87 – start-page: 284 volume-title: Evolutionary Multi-Criterion Optimization year: 2001 ident: 608_CR20 doi: 10.1007/3-540-44719-9_20 – volume-title: Multicriteria Optimization year: 2005 ident: 608_CR23 – volume: 91 start-page: 201 year: 2002 ident: 608_CR25 publication-title: Math. Program. doi: 10.1007/s101070100263 – volume: 54 start-page: 473 year: 2013 ident: 608_CR29 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-012-9501-z – volume-title: Scalable Test Problems for Evolutionary Multiobjective Optimization year: 2005 ident: 608_CR21 – ident: 608_CR36 – volume: 35 start-page: 773 issue: 151 year: 1980 ident: 608_CR50 publication-title: Math. Comput. doi: 10.1090/S0025-5718-1980-0572855-7 – volume: 34 start-page: 2088 issue: 5 year: 2004 ident: 608_CR5 publication-title: IEEE Trans. Syst. Man Cybern Part B (Cybern) doi: 10.1109/TSMCB.2004.834438 – volume: 69 start-page: 2471 issue: 11 year: 2020 ident: 608_CR31 publication-title: Optimization doi: 10.1080/02331934.2019.1576667 – volume: 89 start-page: 637 year: 2022 ident: 608_CR35 publication-title: Numer. Algorithms doi: 10.1007/s11075-021-01128-3 – volume: 64 start-page: 379 issue: 1 year: 2020 ident: 608_CR2 publication-title: J. Appl. Math. Comput. doi: 10.1007/s12190-020-01359-y – volume: 15 start-page: 751 year: 2005 ident: 608_CR8 publication-title: SIAM J. Control. Optim. doi: 10.1137/030601296 – volume: 60 start-page: 1009 issue: 8–9 year: 2011 ident: 608_CR30 publication-title: Optimization doi: 10.1080/02331934.2010.522710 – volume: 22 start-page: 474 year: 2012 ident: 608_CR16 publication-title: SIAM J. Optim. doi: 10.1137/090780201 – volume: 85 start-page: 891 year: 2023 ident: 608_CR52 publication-title: J. Global Optim. doi: 10.1007/s10898-022-01242-z – volume: 28 start-page: 1302 issue: 6 year: 2013 ident: 608_CR17 publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2012.714781 – volume: 22 start-page: 297 year: 1977 ident: 608_CR33 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00932858 – volume-title: Nonlinear Multiobjective Optimization year: 1999 ident: 608_CR43 – volume-title: Multi-objective Optimization Using Evolutionary Algorithms year: 2001 ident: 608_CR19 – volume-title: Optimization and Nonsmooth Analysis year: 1983 ident: 608_CR13 – volume-title: Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control year: 1992 ident: 608_CR46 doi: 10.1142/1493 – volume: 19 start-page: 673 issue: 6 year: 2004 ident: 608_CR34 publication-title: Optim. Methods Softw. doi: 10.1080/10556780410001689225 – volume-title: Functional Analysis, Calculus of Variations and Optimal Control year: 2013 ident: 608_CR12 doi: 10.1007/978-1-4471-4820-3 – ident: 608_CR44 – volume: 51 start-page: 479 year: 2000 ident: 608_CR27 publication-title: Math. Methods Oper. Res. doi: 10.1007/s001860000043 – volume: 15 start-page: 953 issue: 4 year: 2005 ident: 608_CR7 publication-title: SIAM J. Optim. doi: 10.1137/S1052623403429093 – volume: 32 start-page: 591 issue: 3 year: 1994 ident: 608_CR10 publication-title: SIAM J. Control. Optim. doi: 10.1137/S0363012992227423 – volume: 25 start-page: 177 issue: 2 year: 1980 ident: 608_CR49 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.1980.1102298 – volume: 9 start-page: 100008 year: 2021 ident: 608_CR15 publication-title: EURO J. Comput. Optim. doi: 10.1016/j.ejco.2021.100008 – volume: 133 start-page: 39 year: 2012 ident: 608_CR9 publication-title: Math. Program. doi: 10.1007/s10107-010-0408-0 – ident: 608_CR41 – volume-title: Methods of Descent for Nondifferentiable Optimization year: 1985 ident: 608_CR37 doi: 10.1007/BFb0074500 – volume-title: Variational Analysis year: 1998 ident: 608_CR53 doi: 10.1007/978-3-642-02431-3 – volume: 21 start-page: 1109 year: 2011 ident: 608_CR18 publication-title: SIAM J. Optim. doi: 10.1137/10079731X – volume: 28 start-page: 5 year: 2004 ident: 608_CR22 publication-title: Comput. Optim. Appl. doi: 10.1023/B:COAP.0000018877.86161.8b – volume-title: Adaptive Scalarization Methods in Multiobjective Optimization year: 2008 ident: 608_CR24 doi: 10.1007/978-3-540-79159-1 – volume: 24 start-page: 493 year: 2016 ident: 608_CR32 publication-title: TOP doi: 10.1007/s11750-015-0406-8 |
| SSID | ssj0009732 |
| Score | 2.391129 |
| Snippet | In this paper, we propose a method for solving constrained nonsmooth multiobjective optimization problems which is based on a Sequential Quadratic Programming... |
| SourceID | crossref springer |
| SourceType | Index Database Publisher |
| StartPage | 729 |
| SubjectTerms | Convex and Discrete Geometry Management Science Mathematics Mathematics and Statistics Operations Research Operations Research/Decision Theory Optimization Statistics |
| Title | MultiSQP-GS: a sequential quadratic programming algorithm via gradient sampling for nonsmooth constrained multiobjective optimization |
| URI | https://link.springer.com/article/10.1007/s10589-024-00608-1 |
| Volume | 89 |
| WOSCitedRecordID | wos001325685100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1573-2894 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0009732 issn: 0926-6003 databaseCode: 7WY dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1573-2894 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0009732 issn: 0926-6003 databaseCode: M0C dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-2894 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0009732 issn: 0926-6003 databaseCode: P5Z dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-2894 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0009732 issn: 0926-6003 databaseCode: K7- dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-2894 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0009732 issn: 0926-6003 databaseCode: M7S dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-2894 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0009732 issn: 0926-6003 databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1573-2894 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0009732 issn: 0926-6003 databaseCode: M2P dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-2894 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009732 issn: 0926-6003 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gcIADjwFivJQDN4jUtWnTcEOIwQGmwQBxq_LkIbrBXv-A_42TdmyTEBIc20ZWZDu2q3z-jNAhdaRUKYtIlNiAUMYkEYG0xNjESsWljLTnmb1izWb6-MhbZVNYf4x2H19J-kg91ewWO3hPSIkjEYF_n3m0AOkudQMbbtsPE6pd5seSBTxMCKTzqGyV-VnGbDqavQv1Kaax-r_NraGVsqTEp4UPrKM506mi5SmiQXi6_mZn7VfRkqswC4LmDfTpW3DbNy1y0T7BAhfYajj3b_hjKLRzEIVLFFcOwrB4e-r2XgbPOR69CAyvHWZsgPvCYdPhO1TBuAO-nHfBCbBy9acbQ2E09uDFrnwtYizuQrTKyzbQTXTfOL87uyTlbAaiIKkPiEtqYaDB_nVJmU6MZLExsZaWW6gglTVWKJrGqQg1xIQUqjZR11az0AouuI62UAX2YrYR1lJRozkFEYxyFXNrRaBoHEsRJ0KlNXQ0NlH2XlBwZBOyZaf3DPSeeb1n9Ro6HlsoK49j_5flO39bvouWQmdkj2fZQ5VBb2j20aIagdV6B94PvwAq5dzU |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB68QH3wFm_z4JsGum3aNL6JeOG6qKviW8npgevq7uo_8H87SbseIII-tg1DmJnMTMk33wBsME9KlfOEJpmLKONcURkpR63LnNJCqcQEntk6bzTy62txWjWFdfto9_6VZIjUX5rdUg_viRn1JCL47zMIwwwzlmfMP29efVLt8jCWLBJxRjGdJ1WrzM8yvqej73ehIcXsT_5vc1MwUZWUZKf0gWkYsI8zMP6FaBCfTj7YWbszMOYrzJKgeRbeQgtu8-yUHjS3iSQlthrP_QN5fpHGO4gmFYqrhcKIfLhpd-56ty3yeicJvvaYsR7pSo9Nx-9YBZNH9OVWG52AaF9_-jEU1pAAXmyr-zLGkjZGq1bVBjoHl_t7F7uHtJrNQDUm9R71SS2ODNq_phg3mVU8tTY1ygmHFaR21knN8jSXscGYkGPVJmvGGR47KaQwyTwM4V7sAhCjNLNGMBTBmdCpcE5GmqWpkmkmdb4Im30TFU8lBUfxSbbs9V6g3oug96K2CFt9CxXVcez-snzpb8vXYfTw4qRe1I8ax8swFnuDB2zLCgz1Oi92FUb0K1qwsxZ88h2OIN-4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5BmabyMKAbojDAD7wxa2nixDFvaKMwbVSdytDeIv8cRUsz2mz_Af83ZyelnYQmTTwmsU7W3eXuLH_3HcA75kmpcp7QJHMRZZwrKiPlqHWZU1oolZjAM3vCR6P8_FyM17r4A9p9eSXZ9DR4lqZZvX9l3P5a41vqoT4xo55QBM9BD-ER80B6f16ffF_R7vIwoiwScUYxtSdt28y_ZdxOTbfvRUO6GT75_40-ha221CQfG994Bg_srAeP1wgI8enrX9bWRQ-6vvJsiJu34XdozZ2cjunnyQciSYO5xnhwSX5dS-MdR5MW3VWiMCIvL6r5tP5RkpupJPjaY8lqspAes47fsTomM_TxskLnINrXpX48hTUkgBor9bOJvaTCKFa27aE7cDb89O3gC21nNlCNyb6mPtnFkUG_GCjGTWYVT61NjXLCYWWpnXVSszzNZWwwVuRYzcmBcYbHTgopTPIcOrgX-wKIUZpZIxiK4EzoVDgnI83SVMk0kzrvw_uluYqrhpqjWJEwe70XqPci6L0Y9GFvaa2i_U0Xdyx_eb_lb2FzfDgsTo5Gx6-gG3t7B8jLLnTq-bV9DRv6Bg04fxPc8w9UkOic |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MultiSQP-GS%3A+a+sequential+quadratic+programming+algorithm+via+gradient+sampling+for+nonsmooth+constrained+multiobjective+optimization&rft.jtitle=Computational+optimization+and+applications&rft.au=Rashidi%2C+Mehri&rft.au=Soleimani-damaneh%2C+Majid&rft.date=2024-12-01&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=89&rft.issue=3&rft.spage=729&rft.epage=767&rft_id=info:doi/10.1007%2Fs10589-024-00608-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10589_024_00608_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon |