MultiSQP-GS: a sequential quadratic programming algorithm via gradient sampling for nonsmooth constrained multiobjective optimization

In this paper, we propose a method for solving constrained nonsmooth multiobjective optimization problems which is based on a Sequential Quadratic Programming (SQP) type approach and the Gradient Sampling (GS) technique. We consider the multiobjective problems with noncovex and nonsmooth objective a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational optimization and applications Ročník 89; číslo 3; s. 729 - 767
Hlavní autoři: Rashidi, Mehri, Soleimani-damaneh, Majid
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.12.2024
Témata:
ISSN:0926-6003, 1573-2894
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we propose a method for solving constrained nonsmooth multiobjective optimization problems which is based on a Sequential Quadratic Programming (SQP) type approach and the Gradient Sampling (GS) technique. We consider the multiobjective problems with noncovex and nonsmooth objective and constraint functions. The problem functions are assumed to be locally Lipschitz. Such problems arise in important applications, many having (weak) Pareto solutions at points of nondifferentiability of the problem functions. In our algorithm, a penalty function is applied to regularize the constraints, GS is employed to overcome the subdifferential calculation burden and make the search direction computation effective in nonsmooth regions, and SQP is used for getting a local linearization. We prove the global convergence properties of our algorithm to the stationary points which approximate (weak) Pareto front. Furthermore, we illustrate the ability and efficiency of the proposed method via a MATLAB implementation on several tests problems and compare it with some existing algorithms.
ISSN:0926-6003
1573-2894
DOI:10.1007/s10589-024-00608-1