Asymptotic Values of Entire Functions of Infinite Order
We prove that there exists an entire function for which every complex number is an asymptotic value and whose growth is arbitrarily slow subject only to the necessary condition that the function is of infinite order.
Uložené v:
| Vydané v: | Computational methods and function theory Ročník 23; číslo 2; s. 381 - 392 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2023
|
| Predmet: | |
| ISSN: | 1617-9447, 2195-3724 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We prove that there exists an entire function for which every complex number is an asymptotic value and whose growth is arbitrarily slow subject only to the necessary condition that the function is of infinite order. |
|---|---|
| ISSN: | 1617-9447 2195-3724 |
| DOI: | 10.1007/s40315-022-00464-2 |