Asymptotic Values of Entire Functions of Infinite Order
We prove that there exists an entire function for which every complex number is an asymptotic value and whose growth is arbitrarily slow subject only to the necessary condition that the function is of infinite order.
Uloženo v:
| Vydáno v: | Computational methods and function theory Ročník 23; číslo 2; s. 381 - 392 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2023
|
| Témata: | |
| ISSN: | 1617-9447, 2195-3724 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We prove that there exists an entire function for which every complex number is an asymptotic value and whose growth is arbitrarily slow subject only to the necessary condition that the function is of infinite order. |
|---|---|
| ISSN: | 1617-9447 2195-3724 |
| DOI: | 10.1007/s40315-022-00464-2 |