Duality and optimality conditions for reverse convex programs via a convex decomposition

In this paper via the so-called Fenchel–Lagrange duality, we provide necessary local optimality conditions for a reverse convex programming problem ( P ) . As is well known, this duality has been first defined for convex programming problems. So, since in general problem ( P ) is not convex even if...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Rendiconti del Circolo matematico di Palermo Ročník 72; číslo 8; s. 3917 - 3930
Hlavní autori: Keraoui, Houda, Fatajou, Samir, Aboussoror, Abdelmalek
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.12.2023
Predmet:
ISSN:0009-725X, 1973-4409
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper via the so-called Fenchel–Lagrange duality, we provide necessary local optimality conditions for a reverse convex programming problem ( P ) . As is well known, this duality has been first defined for convex programming problems. So, since in general problem ( P ) is not convex even if the data is, we first proceed to a decomposition of an equivalent problem of ( P ) into a family of convex minimization subproblems. Then, by means of the decomposition and the Fenchel–Lagrange duality applied to the subproblems we provide necessary local optimality conditions for the initial problem  ( P ) .
ISSN:0009-725X
1973-4409
DOI:10.1007/s12215-023-00876-6