Duality and optimality conditions for reverse convex programs via a convex decomposition
In this paper via the so-called Fenchel–Lagrange duality, we provide necessary local optimality conditions for a reverse convex programming problem ( P ) . As is well known, this duality has been first defined for convex programming problems. So, since in general problem ( P ) is not convex even if...
Uloženo v:
| Vydáno v: | Rendiconti del Circolo matematico di Palermo Ročník 72; číslo 8; s. 3917 - 3930 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.12.2023
|
| Témata: | |
| ISSN: | 0009-725X, 1973-4409 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper via the so-called Fenchel–Lagrange duality, we provide necessary local optimality conditions for a reverse convex programming problem
(
P
)
. As is well known, this duality has been first defined for convex programming problems. So, since in general problem
(
P
)
is not convex even if the data is, we first proceed to a decomposition of an equivalent problem of
(
P
)
into a family of convex minimization subproblems. Then, by means of the decomposition and the Fenchel–Lagrange duality applied to the subproblems we provide necessary local optimality conditions for the initial problem
(
P
)
. |
|---|---|
| ISSN: | 0009-725X 1973-4409 |
| DOI: | 10.1007/s12215-023-00876-6 |