Structural Complexity of One-Dimensional Random Geometric Graphs
We study the richness of the ensemble of graphical structures (i.e., unlabeled graphs) of the one-dimensional random geometric graph model defined by <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> nodes randomly scattered in [0, 1] that c...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on information theory Jg. 69; H. 2; S. 794 - 812 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9448, 1557-9654 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We study the richness of the ensemble of graphical structures (i.e., unlabeled graphs) of the one-dimensional random geometric graph model defined by <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> nodes randomly scattered in [0, 1] that connect if they are within the connection range <inline-formula> <tex-math notation="LaTeX">r\in [{0,1}] </tex-math></inline-formula>. We provide bounds on the number of possible structures which give universal upper bounds on the structural entropy that hold for any <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula> and distribution of the node locations. For fixed <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula>, the number of structures is <inline-formula> <tex-math notation="LaTeX">\Theta (a^{2n}) </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">a=a(r)=2 \cos {\left ({\frac {\pi }{\lceil 1/r \rceil +2}}\right)} </tex-math></inline-formula>, and therefore the structural entropy is upper bounded by <inline-formula> <tex-math notation="LaTeX">2n\log _{2} a(r) + O(1) </tex-math></inline-formula>. For large <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>, we derive bounds on the structural entropy normalized by <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>, and evaluate them for independent and uniformly distributed node locations. When the connection range <inline-formula> <tex-math notation="LaTeX">r_{n} </tex-math></inline-formula> is <inline-formula> <tex-math notation="LaTeX">O(1/n) </tex-math></inline-formula>, the obtained upper bound is given in terms of a function that increases with <inline-formula> <tex-math notation="LaTeX">n r_{n} </tex-math></inline-formula> and asymptotically attains 2 bits per node. If the connection range is bounded away from zero and one, the upper and lower bounds decrease linearly with <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula>, as <inline-formula> <tex-math notation="LaTeX">2(1-r) </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">(1-r)\log _{2} e </tex-math></inline-formula>, respectively. When <inline-formula> <tex-math notation="LaTeX">r_{n} </tex-math></inline-formula> is vanishing but dominates <inline-formula> <tex-math notation="LaTeX">1/n </tex-math></inline-formula> (e.g., <inline-formula> <tex-math notation="LaTeX">r_{n} \propto \ln n / n </tex-math></inline-formula>), the normalized entropy is between <inline-formula> <tex-math notation="LaTeX">\log _{2} e \approx 1.44 </tex-math></inline-formula> and 2 bits per node. We also give a simple encoding scheme for random structures that requires 2 bits per node. The upper bounds in this paper easily extend to the entropy of the labeled random graph model, since this is given by the structural entropy plus a term that accounts for all the permutations of node labels that are possible for a given structure, which is no larger than <inline-formula> <tex-math notation="LaTeX">\log _{2}(n!) = n \log _{2} n {-} n + O(\log _{2} n) </tex-math></inline-formula>. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9448 1557-9654 |
| DOI: | 10.1109/TIT.2022.3207819 |