FUNCTIONAL PEARL Linear lambda calculus and PTIME-completeness

We give transparent proofs of the PTIME-completeness of two decision problems for terms in the λ-calculus. The first is a reproof of the theorem that type inference for the simply-typed λ-calculus is PTIME-complete. Our proof is interesting because it uses no more than the standard combinators Churc...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of functional programming Ročník 14; číslo 6; s. 623 - 633
Hlavný autor: MAIRSON, HARRY G.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cambridge, UK Cambridge University Press 01.11.2004
Predmet:
ISSN:0956-7968, 1469-7653
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We give transparent proofs of the PTIME-completeness of two decision problems for terms in the λ-calculus. The first is a reproof of the theorem that type inference for the simply-typed λ-calculus is PTIME-complete. Our proof is interesting because it uses no more than the standard combinators Church knew of some 70 years ago, in which the terms are linear affine – each bound variable occurs at most once. We then derive a modification of Church's coding of Booleans that is linear, where each bound variable occurs exactly once. A consequence of this construction is that any interpreter for linear λ-calculus requires polynomial time. The logical interpretation of this consequence is that the problem of normalizing proofnets for multiplicative linear logic (MLL) is also PTIME-complete.
Bibliografia:ark:/67375/6GQ-X4WZ8T0Z-W
istex:CF7807EFCF2886675D6CDC8B16E262372B2C402C
PII:S0956796804005131
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0956-7968
1469-7653
DOI:10.1017/S0956796804005131