Complexity of linear and majority functions in the basis of antichain functions
The complexity of realization of Boolean functions by circuits of functional elements in the basis consisting of all characteristic functions of antichains over a Boolean cube is studied. It is proved that the complexity of realization of an n -variable parity function is and the complexity of its n...
Uložené v:
| Vydané v: | Moscow University mathematics bulletin Ročník 71; číslo 2; s. 82 - 83 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Allerton Press
01.03.2016
|
| Predmet: | |
| ISSN: | 0027-1322, 1934-8444 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The complexity of realization of Boolean functions by circuits of functional elements in the basis consisting of all characteristic functions of antichains over a Boolean cube is studied. It is proved that the complexity of realization of an
n
-variable parity function is
and the complexity of its negation equals the complexity of the
n
-variable majority function which is
. |
|---|---|
| ISSN: | 0027-1322 1934-8444 |
| DOI: | 10.3103/S002713221602008X |