Task offloading and resource allocation in NOMA-VEC: A multi-agent deep graph reinforcement learning algorithm
Vehicular edge computing (VEC) is emerging as a promising solution paradigm to meet the requirements of compute-intensive applications in internet of vehicle (IoV). Non-orthogonal multiple access (NOMA) has advantages in improving spectrum efficiency and dealing with bandwidth scarcity and cost. It...
Gespeichert in:
| Veröffentlicht in: | China communications Jg. 21; H. 8; S. 79 - 88 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
China Institute of Communications
01.08.2024
School of Electronic and Information Engineering,Beijing Jiaotong University,Beijing 100044,China |
| Schlagworte: | |
| ISSN: | 1673-5447 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Vehicular edge computing (VEC) is emerging as a promising solution paradigm to meet the requirements of compute-intensive applications in internet of vehicle (IoV). Non-orthogonal multiple access (NOMA) has advantages in improving spectrum efficiency and dealing with bandwidth scarcity and cost. It is an encouraging progress combining VEC and NOMA. In this paper, we jointly optimize task offloading decision and resource allocation to maximize the service utility of the NOMA-VEC system. To solve the optimization problem, we propose a multiagent deep graph reinforcement learning algorithm. The algorithm extracts the topological features and relationship information between agents from the system state as observations, outputs task offloading decision and resource allocation simultaneously with local policy network, which is updated by a local learner. Simulation results demonstrate that the proposed method achieves a 1.52%∼5.80% improvement compared with the benchmark algorithms in system service utility. |
|---|---|
| AbstractList | Vehicular edge computing (VEC) is emerging as a promising solution paradigm to meet the requirements of compute-intensive applications in internet of vehicle (IoV). Non-orthogonal multiple access (NOMA) has advantages in improving spectrum efficiency and dealing with bandwidth scarcity and cost. It is an encouraging progress combining VEC and NOMA. In this paper, we jointly optimize task offloading decision and resource allocation to maximize the service utility of the NOMA-VEC system. To solve the optimization problem, we propose a multiagent deep graph reinforcement learning algorithm. The algorithm extracts the topological features and relationship information between agents from the system state as observations, outputs task offloading decision and resource allocation simultaneously with local policy network, which is updated by a local learner. Simulation results demonstrate that the proposed method achieves a 1.52%∼5.80% improvement compared with the benchmark algorithms in system service utility. Vehicular edge computing(VEC)is emerging as a promising solution paradigm to meet the requirements of compute-intensive applications in internet of vehicle(IoV).Non-orthogonal multiple ac-cess(NOMA)has advantages in improving spectrum efficiency and dealing with bandwidth scarcity and cost.It is an encouraging progress combining VEC and NOMA.In this paper,we jointly optimize task offloading decision and resource allocation to maxi-mize the service utility of the NOMA-VEC system.To solve the optimization problem,we propose a multi-agent deep graph reinforcement learning algorithm.The algorithm extracts the topological features and re-lationship information between agents from the sys-tem state as observations,outputs task offloading de-cision and resource allocation simultaneously with local policy network,which is updated by a local learner.Simulation results demonstrate that the pro-posed method achieves a 1.52%~5.80%improvement compared with the benchmark algorithms in system service utility. |
| Author | Dan, Tao Yonghui, Hu Peng, Qi Zuodong, Jin |
| AuthorAffiliation | School of Electronic and Information Engineering,Beijing Jiaotong University,Beijing 100044,China |
| AuthorAffiliation_xml | – name: School of Electronic and Information Engineering,Beijing Jiaotong University,Beijing 100044,China |
| Author_xml | – sequence: 1 givenname: Hu surname: Yonghui fullname: Yonghui, Hu organization: School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China – sequence: 2 givenname: Jin surname: Zuodong fullname: Zuodong, Jin organization: School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China – sequence: 3 givenname: Qi surname: Peng fullname: Peng, Qi organization: School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China – sequence: 4 givenname: Tao surname: Dan fullname: Dan, Tao organization: School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China |
| BookMark | eNqNkD1PwzAQhj0UiVL6Dxi8MKY4duIkDEhVVL5UYAFW65qcgyG1KycVH78et2FATHixpbvnvfNzREbWWSSExmzGRREXZ7dlOdMw44wnEWM83r9YPiLjWGYiSpMkOyTTrntl4eRSCsnHxD5C90ad1q2D2tiGgq2px85tfYUU2tZV0BtnqbH0_uFuHj0vynM6p-tt25sIGrQ9rRE3tPGweQmksdoFdL0rtAje7kPbxnnTv6yPyYGGtsPpzz0hT5eLx_I6Wj5c3ZTzZVSFlfsoyVgqdSZFWqcAOmGrgrM61YzVOQpdJyvADGpZCKY1T1YyrzCWHCuerwqNKCbkdMh9B6vBNuo1fMiGieqr6T8GMYxloS8f-irvus6jVhtv1uA_VczUXqsKWpUGtWPUTqsa6IBe_EEr0-9d9R5M-5-AkyHAIOKvuTJjsRDiG8FkjVY |
| CODEN | CCHOBE |
| CitedBy_id | crossref_primary_10_1016_j_vehcom_2025_100950 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 97E RIA RIE AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.23919/JCC.fa.2024-0021.202408 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics |
| EndPage | 88 |
| ExternalDocumentID | zgtx202408007 10_23919_JCC_fa_2024_0021_202408 10670133 |
| Genre | orig-research |
| GroupedDBID | -SI -SJ -S~ 0R~ 29B 4.4 5GY 6IK 92H 92I 97E AAHTB AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABPEJ ABQJQ ABVLG AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CAJEI CAJEJ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL Q-- Q-9 RIA RIE RNS TCJ TGT U1G U5S U5T AAYXX CITATION 2B. 4A8 93N PSX RIG |
| ID | FETCH-LOGICAL-c240t-47056f7635d5aaf40b920d5f00d8e3fd4bae7ad6930ff24b68ce162ec28b9fee3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001367252600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1673-5447 |
| IngestDate | Thu May 29 03:54:26 EDT 2025 Sat Nov 29 06:38:58 EST 2025 Tue Nov 18 21:46:45 EST 2025 Wed Aug 27 02:01:24 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | graph convolutional net-work task offloading edge computing reinforcement learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c240t-47056f7635d5aaf40b920d5f00d8e3fd4bae7ad6930ff24b68ce162ec28b9fee3 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_23919_JCC_fa_2024_0021_202408 wanfang_journals_zgtx202408007 crossref_citationtrail_10_23919_JCC_fa_2024_0021_202408 ieee_primary_10670133 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | China communications |
| PublicationTitleAbbrev | ChinaComm |
| PublicationTitle_FL | China Communications |
| PublicationYear | 2024 |
| Publisher | China Institute of Communications School of Electronic and Information Engineering,Beijing Jiaotong University,Beijing 100044,China |
| Publisher_xml | – name: China Institute of Communications – name: School of Electronic and Information Engineering,Beijing Jiaotong University,Beijing 100044,China |
| SSID | ssj0000866362 |
| Score | 2.3055477 |
| Snippet | Vehicular edge computing (VEC) is emerging as a promising solution paradigm to meet the requirements of compute-intensive applications in internet of vehicle... Vehicular edge computing(VEC)is emerging as a promising solution paradigm to meet the requirements of compute-intensive applications in internet of... |
| SourceID | wanfang crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 79 |
| SubjectTerms | Costs edge computing Feature extraction graph convolutional network Interference NOMA Optimization reinforcement learning Resource management Servers task offloading |
| Title | Task offloading and resource allocation in NOMA-VEC: A multi-agent deep graph reinforcement learning algorithm |
| URI | https://ieeexplore.ieee.org/document/10670133 https://d.wanfangdata.com.cn/periodical/zgtx202408007 |
| Volume | 21 |
| WOSCitedRecordID | wos001367252600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) issn: 1673-5447 databaseCode: RIE dateStart: 20130101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://ieeexplore.ieee.org/ omitProxy: false ssIdentifier: ssj0000866362 providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxELUKqlQuhbZUBGjkA1cn--Fd73KLIqIKQcqBRrlZXnucRoRdlCwV4tfjsReUS6Vy82HHWvmN5fF45j1CzjAmVhZSlpWZYFwJzqo8AobkYUJBmmovBjO7EtNpMZ-XN12zuu-FAQBffAYDHPq3fNPoR0yVDZHuzIUs6Q7ZESIPzVpvCRUXm-epFxCNc4EP_lyEyp0kLeNyeDkeDywSDSWc4cHmRygquXUceX0V371TW1Uvtg6ayf47f_GAfO4iSjoKLvCFfID6K_n02nC8-UbqW7W5o421q8YXzFNVG7ru0vYUH95D2o4uazr9dT1is4vxOR1RX2vIFPZeUQPwQD25tbP0ZKva5xVppzrhJl0tmvWy_XN_SH5PLm7HP1kns8C0W4GWceGCIIvEdCZTyvKoKpPIZDaKTAGpNbxSIJRBzURrE17lhYY4T0AnRVVagPQ72a2bGo4ILaAolI4jbY3mWWxK7i7u1k2V5bzgyvaIeF1tqTsOcpTCWEl3F_E4SYeTtEoiOhJxkgGnHonfLB8CD8d_2BwiQFvfB2x6pN8hLLsNu5HPi_YpWLmg6fgfhidkL_gP1v-dkt12_Qg_yEf9t11u1n3vji_NotrZ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BQSoXPotYoMUHrm7z4cQJt9WqVYHtwmGperMce7ysuk2q3RQhfj0eO632glRuPmSsyG8sj8cz7wF8pJhYO8x5UReSCy0Fb8oEOZGHSY15boIYzPlUzmbVxUX9fWhWD70wiBiKz_CQhuEt33bmhlJlR0R35kOW_CE8KoTIktiudZdS8dF5mQcJ0bSU9OQvZKzdyfI6rY--TCaHjqiGMsHpaAsjkpXcOpCCwkro32mdbhdbR83Js__8yefwdIgp2Tg6wQt4gO1L2L1tOd68gnauN5esc27VhZJ5plvL1kPintHTe0zcsWXLZt_Oxvz8ePKJjVmoNuSauq-YRbxmgd7aWwa6VRMyi2zQnfCTrhbdetn_vNqDHyfH88kpH4QWuPEr0HMhfRjkiJrOFlo7kTR1ltjCJYmtMHdWNBqltqSa6FwmmrIymJYZmqxqaoeYv4adtmvxDbAKq0qbNDHOGlGkthb-6u78VEUpKqHdCOTtaiszsJCTGMZK-dtIwEl5nJTTitBRhJOKOI0gvbO8jkwc97DZI4C2vo_YjOBgQFgNW3aj_iz639HKh01v_2H4AXZP52dTNf08-_oOnkRfomrA97DTr29wHx6bX_1ysz4IrvkXV6feIA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Task+Offloading+and+Resource+Allocation+in+NOMA-VEC%3AA+Multi-Agent+Deep+Graph+Reinforcement+Learning+Algorithm&rft.jtitle=%E4%B8%AD%E5%9B%BD%E9%80%9A%E4%BF%A1%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Hu+Yonghui&rft.au=Jin+Zuodong&rft.au=Qi+Peng&rft.au=Tao+Dan&rft.date=2024-08-01&rft.pub=School+of+Electronic+and+Information+Engineering%2CBeijing+Jiaotong+University%2CBeijing+100044%2CChina&rft.issn=1673-5447&rft.volume=21&rft.issue=8&rft.spage=79&rft.epage=88&rft_id=info:doi/10.23919%2FJCC.fa.2024-0021.202408&rft.externalDocID=zgtx202408007 |
| thumbnail_s | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgtx%2Fzgtx.jpg |