Research on Daily Load Curve Classification Based on Improved Fuzzy C-means Clustering Algorithm

For the problem of severe unpredictability and three-phase unbalance of user demand in low-voltage distribution networks, a daily load curve clustering technique integrating the sparrow search algorithm (SSA) and the fuzzy C-mean clustering algorithm (FCM) is presented. The initial load data set is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series Jg. 2584; H. 1; S. 12137 - 12142
Hauptverfasser: Li, Mingcong, Hu, Heng, Shi, Haoran, Wang, Xi, Ye, Lan, Zhou, Feng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Bristol IOP Publishing 01.09.2023
Schlagworte:
ISSN:1742-6588, 1742-6596
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the problem of severe unpredictability and three-phase unbalance of user demand in low-voltage distribution networks, a daily load curve clustering technique integrating the sparrow search algorithm (SSA) and the fuzzy C-mean clustering algorithm (FCM) is presented. The initial load data set is pre-processed to lessen the interference of classification results. The load characteristic index of the daily load curve is removed to produce a reduced dimensional data set. The clustering validity index is introduced to solve the optimal number of clusters, and the early warning mechanism of the sparrow search algorithm is adopted to improve the global search capability. These improvements are made to improve the sensitivity of the initial clustering center of the FCM algorithm and the problem of local optimum in the process of finding the optimum. The simulation used to validate the revised clustering algorithm’s accuracy and efficacy for daily load categorization is a reference for resolving the three-phase load unbalance issue.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/2584/1/012137