Intersection Types for the lambda-mu Calculus

We introduce an intersection type system for the lambda-mu calculus that is invariant under subject reduction and expansion. The system is obtained by describing Streicher and Reus's denotational model of continuations in the category of omega-algebraic lattices via Abramsky's domain-logic...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Logical methods in computer science Ročník 14, Issue 1
Hlavní autoři: van Bakel, Steffen, Barbanera, Franco, de'Liguoro, Ugo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Logical Methods in Computer Science e.V 01.01.2018
Témata:
ISSN:1860-5974, 1860-5974
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We introduce an intersection type system for the lambda-mu calculus that is invariant under subject reduction and expansion. The system is obtained by describing Streicher and Reus's denotational model of continuations in the category of omega-algebraic lattices via Abramsky's domain-logic approach. This provides at the same time an interpretation of the type system and a proof of the completeness of the system with respect to the continuation models by means of a filter model construction. We then define a restriction of our system, such that a lambda-mu term is typeable if and only if it is strongly normalising. We also show that Parigot's typing of lambda-mu terms with classically valid propositional formulas can be translated into the restricted system, which then provides an alternative proof of strong normalisability for the typed lambda-mu calculus.
ISSN:1860-5974
1860-5974
DOI:10.23638/LMCS-14(1:2)2018