A complete generalized solution to the inverse kinematics of robots

The kinematic transformation between task space and joint configuration coordinates is nonlinear and configuration dependent. A solution to the inverse kinematics is a vector of joint configuration coordinates that corresponds to a set of task space coordinates. For a class of robots closed form sol...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE journal of robotics and automation Ročník 1; číslo 1; s. 14 - 20
Hlavní autori: Goldenberg, A., Benhabib, B., Fenton, R.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY IEEE 01.03.1985
Institute of Electrical and Electronics Engineers
Predmet:
ISSN:0882-4967
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The kinematic transformation between task space and joint configuration coordinates is nonlinear and configuration dependent. A solution to the inverse kinematics is a vector of joint configuration coordinates that corresponds to a set of task space coordinates. For a class of robots closed form solutions always exist, but constraints on joint displacements cannot be systematically incorporated in the process of obtaining a solution. An iterative solution is presented that is suitable for any class of robots having rotary or prismatic joints, with any arbitrary number of degrees of freedom, including both standard and kinematically redundant robots. The solution can be obtained subject to specified constraints and based on certain performance criteria. The solution is based on a new rapidly convergent constrained nonlinear optimization algorithm which uses a modified Newton-Raphson technique for solving a system nonlinear equations. The algorithm is illustrated using as an example a kinematically redundant robot.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0882-4967
DOI:10.1109/JRA.1985.1086995