Inverse max+sum spanning tree problem under weighted l∞ norm by modifying max-weight vector

The max+sum spanning tree ( MSST ) problem is to determine a spanning tree T whose combined weight max e ∈ T w ( e ) + ∑ e ∈ T c ( e ) is minimum for a given edge-weighted undirected network G ( V ,  E ,  c ,  w ). This problem can be solved within O ( m log n ) time, where m and n are the numbers o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of global optimization Ročník 84; číslo 3; s. 715 - 738
Hlavní autoři: Jia, Junhua, Guan, Xiucui, Zhang, Qiao, Qian, Xinqiang, Pardalos, Panos M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.11.2022
Springer Nature B.V
Témata:
ISSN:0925-5001, 1573-2916
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The max+sum spanning tree ( MSST ) problem is to determine a spanning tree T whose combined weight max e ∈ T w ( e ) + ∑ e ∈ T c ( e ) is minimum for a given edge-weighted undirected network G ( V ,  E ,  c ,  w ). This problem can be solved within O ( m log n ) time, where m and n are the numbers of edges and nodes, respectively. An inverse MSST problem ( IMSST ) aims to determine a new weight vector w ¯ so that a given T 0 becomes an optimal MSST of the new network G ( V , E , c , w ¯ ) . The IMSST problem under weighted l ∞ norm is to minimize the modification cost max e ∈ E q ( e ) | w ¯ ( e ) - w ( e ) | , where q ( e ) is a cost modifying the weight w ( e ). We first provide some optimality conditions of the problem. Then we propose a strongly polynomial time algorithm in O ( m 2 log n ) time based on a binary search and a greedy method. There are O ( m ) iterations and we solve an MSST problem under a new weight in each iteration. Finally, we perform some numerical experiments to show the efficiency of the algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-022-01170-y