A novel algorithm for imputing the missing values in incomplete datasets
In today’s world, our heavy reliance on digital devices for data collection has become the norm. However, when these devices fail, there is a significant risk of losing valuable information, making data mining an arduous task for data analysts. The presence of a substantial amount of missing data wi...
Saved in:
| Published in: | Iran Journal of Computer Science (Online) Vol. 7; no. 1; pp. 13 - 23 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
01.03.2024
Springer Nature B.V |
| Subjects: | |
| ISSN: | 2520-8438, 2520-8446 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In today’s world, our heavy reliance on digital devices for data collection has become the norm. However, when these devices fail, there is a significant risk of losing valuable information, making data mining an arduous task for data analysts. The presence of a substantial amount of missing data within a dataset leads to inappropriate results and incomplete data analysis. Consequently, there is a pressing need to develop an algorithm capable of efficiently and accurately predicting missing values. This research paper introduces a new algorithm, known as the IMV-RE (imputing the missing values in real-time environment) algorithm, which is based on a novel splitting approach. The IMV-RE algorithm addresses the challenge of imputing various missing values within a dataset. To enhance prediction accuracy, the algorithm sets an upper limit for each class that contains missing values, providing valuable assistance in accurately predicting these values. To evaluate the efficacy of the IMV-RE algorithm, we conducted experiments using ten benchmark datasets comprising both numerical and mixed data. The results of our comparative analysis demonstrate that the proposed IMV-RE algorithm outperforms existing techniques in terms of sensitivity to accuracy, root mean square error (RMSE), and coefficient of determination (
R
2
). |
|---|---|
| AbstractList | In today’s world, our heavy reliance on digital devices for data collection has become the norm. However, when these devices fail, there is a significant risk of losing valuable information, making data mining an arduous task for data analysts. The presence of a substantial amount of missing data within a dataset leads to inappropriate results and incomplete data analysis. Consequently, there is a pressing need to develop an algorithm capable of efficiently and accurately predicting missing values. This research paper introduces a new algorithm, known as the IMV-RE (imputing the missing values in real-time environment) algorithm, which is based on a novel splitting approach. The IMV-RE algorithm addresses the challenge of imputing various missing values within a dataset. To enhance prediction accuracy, the algorithm sets an upper limit for each class that contains missing values, providing valuable assistance in accurately predicting these values. To evaluate the efficacy of the IMV-RE algorithm, we conducted experiments using ten benchmark datasets comprising both numerical and mixed data. The results of our comparative analysis demonstrate that the proposed IMV-RE algorithm outperforms existing techniques in terms of sensitivity to accuracy, root mean square error (RMSE), and coefficient of determination (R2). In today’s world, our heavy reliance on digital devices for data collection has become the norm. However, when these devices fail, there is a significant risk of losing valuable information, making data mining an arduous task for data analysts. The presence of a substantial amount of missing data within a dataset leads to inappropriate results and incomplete data analysis. Consequently, there is a pressing need to develop an algorithm capable of efficiently and accurately predicting missing values. This research paper introduces a new algorithm, known as the IMV-RE (imputing the missing values in real-time environment) algorithm, which is based on a novel splitting approach. The IMV-RE algorithm addresses the challenge of imputing various missing values within a dataset. To enhance prediction accuracy, the algorithm sets an upper limit for each class that contains missing values, providing valuable assistance in accurately predicting these values. To evaluate the efficacy of the IMV-RE algorithm, we conducted experiments using ten benchmark datasets comprising both numerical and mixed data. The results of our comparative analysis demonstrate that the proposed IMV-RE algorithm outperforms existing techniques in terms of sensitivity to accuracy, root mean square error (RMSE), and coefficient of determination ( R 2 ). |
| Author | Singh, Manminder Bhagat, Hutashan Vishal |
| Author_xml | – sequence: 1 givenname: Hutashan Vishal surname: Bhagat fullname: Bhagat, Hutashan Vishal email: hutashan20@gmail.com organization: BV Raju Institute of Technology – sequence: 2 givenname: Manminder surname: Singh fullname: Singh, Manminder organization: Sant Longowal Institute of Engineering and Technology |
| BookMark | eNp9kE9LAzEQxYNUsNZ-AU8Bz6uz-bPJHktRKxS86Dmku9k2ZTdZk7Tgt3frioKHwsC8w_vNPN41mjjvDEK3OdznAOIhMgKMZUBoBpBzlpUXaEo4gUwyVkx-NZVXaB7jHgCIoEyQYopWC-z80bRYt1sfbNp1uPEB264_JOu2OO0M7myMJ33U7cFEbN0wle_61iSDa510NCneoMtGt9HMf_YMvT89vi1X2fr1-WW5WGcVoazMCpAbU_ONkDkvSyk1oaSWVAgjGkNkA1qD5kWR641gEijTRVFWNW1oDbLODZ2hu_FuH_zHECepvT8EN7xUlHBOqOAAg4uMrir4GINpVB9sp8OnykGdSlNjaWooTX2XpsoBkv-gyiadrHcpaNueR-mIxuGP25rwl-oM9QVWvIHG |
| CitedBy_id | crossref_primary_10_62486_latia2025304 crossref_primary_10_1186_s12877_023_04546_1 crossref_primary_10_1007_s00357_025_09506_5 crossref_primary_10_1007_s42044_025_00262_8 |
| Cites_doi | 10.1016/j.eswa.2015.11.004 10.1016/j.knosys.2019.06.013 10.1007/s10489-015-0666-x 10.1007/s11277-021-09237-x 10.1016/j.ins.2009.10.008 10.1016/j.eswa.2020.114425 10.1002/widm.1301 10.1016/j.asoc.2021.107167 10.1175/1520-0442(2001)014<0853:AOICDE>2.0.CO;2 10.1016/j.chemolab.2022.104518 10.1016/j.micpro.2020.103636 10.1109/ICHIS.2004.91 10.1016/j.neucom.2014.12.073 10.1093/aje/kwt312 10.1007/978-3-319-10247-4 10.1016/j.ins.2013.01.021 10.4018/IJDSST.292446 10.21449/ijate.430720 10.1016/j.eswa.2012.09.017 10.1007/s42044-020-00065-z 10.4097/kjae.2013.64.5.402 10.1016/j.jsp.2009.10.001 10.1016/j.procs.2017.05.008 10.1016/j.asoc.2020.106249 10.1016/j.jksuci.2018.01.002 10.1016/j.eswa.2019.112926 10.1016/j.knosys.2020.105803 10.1016/j.cjca.2020.11.010 10.1007/978-981-19-5224-1_18 10.1016/j.trc.2014.11.003 10.1007/978-3-030-85626-7_110 10.1049/trit.2019.0032 10.1002/sam.11348 10.1016/j.asoc.2014.09.052 10.18637/jss.v045.i03 10.3390/sym12101594 10.1016/j.patrec.2015.08.023 10.1016/j.knosys.2017.06.033 10.1007/978-1-0716-1967-4_6 10.1016/j.knosys.2018.03.026 10.1109/SNPD.2007.93 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s42044-023-00154-9 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2520-8446 |
| EndPage | 23 |
| ExternalDocumentID | 10_1007_s42044_023_00154_9 |
| GroupedDBID | -EM 0R~ 406 AACDK AAHNG AAIAL AAJBT AASML AATNV AATVU AAUYE ABAKF ABDZT ABECU ABFTV ABJNI ABKCH ABMQK ABQBU ABTEG ABTKH ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF AEFQL AEJRE AEMSY AESKC AFBBN AFQWF AGDGC AGJBK AGMZJ AGQEE AGRTI AIAKS AIGIU AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR AXYYD BGNMA CSCUP DPUIP EBLON EBS EJD FIGPU FINBP FNLPD FSGXE GGCAI H13 IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SJYHP SNE SNPRN SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UOJIU UTJUX UZXMN VFIZW Z83 ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c2349-608bed5b78159988a232d8377e7fe28f0aa0a5661ab748034a669cd3f3d08d1e3 |
| IEDL.DBID | K7- |
| ISSN | 2520-8438 |
| IngestDate | Mon Nov 10 03:00:25 EST 2025 Tue Nov 18 22:39:03 EST 2025 Sat Nov 29 03:08:26 EST 2025 Fri Feb 21 02:40:26 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Incomplete datasets Data missingness Missing values Missingness mechanisms Imputation Imputing values Data imputation model Root mean square error |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2349-608bed5b78159988a232d8377e7fe28f0aa0a5661ab748034a669cd3f3d08d1e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3255237500 |
| PQPubID | 7435094 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_3255237500 crossref_primary_10_1007_s42044_023_00154_9 crossref_citationtrail_10_1007_s42044_023_00154_9 springer_journals_10_1007_s42044_023_00154_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20240300 2024-03-00 20240301 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 3 year: 2024 text: 20240300 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Iran Journal of Computer Science (Online) |
| PublicationTitleAbbrev | Iran J Comput Sci |
| PublicationYear | 2024 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | Choudhary, Kumar, Sharma, Sharma (CR38) 2022; 123 Probst, Wright, Boulesteix (CR9) 2019; 9 Wei, Wang, Burger (CR29) 2023 Wu, Song, Shen (CR33) 2007; 3 Austin, White, Lee, van Buuren (CR10) 2021; 37 Kelkar (CR4) 2022; 14 Lobato, Sales, Araujo, Tadaiesky, Dias, Ramos, Santana (CR13) 2015; 68 Mostafa, Eladimy, Hamad, Amano (CR21) 2020; 12 Mostafa (CR18) 2019; 4 Schneider (CR14) 2001; 14 Kalkan, Yusuf, Kelecioğlu (CR2) 2018; 5 Gautam, Ravi (CR11) 2015; 156 Ngueilbaye, Wang, Mahamat, Junaidu (CR26) 2021; 103 Tsai, Li, Lin (CR7) 2018; 151 Sim, Kwon, Lee (CR40) 2016; 46 Tang, Zhang, Wang, Wang, Liu (CR35) 2015; 51 Baraldi, Enders (CR6) 2010; 48 Silva-Ramírez, Pino-Mejías, López-Coello (CR20) 2015; 29 Adhikari, Jiang, Zhan (CR23) 2021 Lan, Xu, Ma, Li (CR24) 2020; 141 Sezer, Başeğmez, Kahraman, Cebi, Cevik Onar, Oztaysi, Tolga, Sari (CR30) 2022 Gond, Dubey, Rasool, Khare, Fong, Dey, Joshi (CR31) 2023 Kwon, Sim (CR39) 2013; 40 Vazifehdan, Moattar, Jalali (CR37) 2019; 31 García, Luengo, Herrera (CR3) 2015 Petrozziello, Jordanov (CR17) 2017; 108 Bhagat, Singh (CR5) 2022; 223 Priya, Sivaraj, Priyaa (CR12) 2017; 133 Nelwamondo, Golding, Marwala (CR34) 2013; 237 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Duchesnay (CR43) 2011; 12 Kamkhad, Jampachaisri, Siriyasatien, Kesorn (CR25) 2020; 196 Shah, Bartlett, Carpenter, Nicholas, Hemingway (CR41) 2014; 179 Peng, Zou, Liu, Lu (CR27) 2021; 168 Wu, Wun, Chou (CR32) 2004 Aydilek, Arslan (CR36) 2013; 233 Gad, Hosahalli, Manjunatha, Ghoneim (CR28) 2021; 4 Kang (CR1) 2013; 64 Sammulal, Usha Rani, Yepuri (CR8) 2017; 12 Sefidian, Daneshpour (CR22) 2020; 91 Tang, Ishwaran (CR16) 2017; 10 Razavi-Far, Cheng, Saif, Ahmadi (CR15) 2020; 187 Pan, Yang, Cao, Lu, Zhang (CR19) 2015; 43 Van Buuren, Groothuis-Oudshoorn (CR42) 2011; 45 D Adhikari (154_CR23) 2021 F Pedregosa (154_CR43) 2011; 12 PC Austin (154_CR10) 2021; 37 S García (154_CR3) 2015 R Pan (154_CR19) 2015; 43 R Razavi-Far (154_CR15) 2020; 187 D Peng (154_CR27) 2021; 168 A Ngueilbaye (154_CR26) 2021; 103 T Schneider (154_CR14) 2001; 14 A Choudhary (154_CR38) 2022; 123 R Wei (154_CR29) 2023 H Kang (154_CR1) 2013; 64 P Sammulal (154_CR8) 2017; 12 C Gautam (154_CR11) 2015; 156 ÖK Kalkan (154_CR2) 2018; 5 AN Baraldi (154_CR6) 2010; 48 EL Silva-Ramírez (154_CR20) 2015; 29 F Tang (154_CR16) 2017; 10 BA Kelkar (154_CR4) 2022; 14 J Tang (154_CR35) 2015; 51 AD Shah (154_CR41) 2014; 179 HV Bhagat (154_CR5) 2022; 223 CF Tsai (154_CR7) 2018; 151 A Petrozziello (154_CR17) 2017; 108 SM Mostafa (154_CR18) 2019; 4 AM Sefidian (154_CR22) 2020; 91 S Van Buuren (154_CR42) 2011; 45 F Lobato (154_CR13) 2015; 68 O Kwon (154_CR39) 2013; 40 SM Mostafa (154_CR21) 2020; 12 E Sezer (154_CR30) 2022 FV Nelwamondo (154_CR34) 2013; 237 I Gad (154_CR28) 2021; 4 P Probst (154_CR9) 2019; 9 RD Priya (154_CR12) 2017; 133 VK Gond (154_CR31) 2023 J Wu (154_CR33) 2007; 3 Q Lan (154_CR24) 2020; 141 CH Wu (154_CR32) 2004 IB Aydilek (154_CR36) 2013; 233 M Vazifehdan (154_CR37) 2019; 31 N Kamkhad (154_CR25) 2020; 196 J Sim (154_CR40) 2016; 46 |
| References_xml | – volume: 46 start-page: 485 year: 2016 end-page: 493 ident: CR40 article-title: Adaptive pairing of classifier and imputation methods based on the characteristics of missing values in data sets publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.11.004 – volume: 187 start-page: 104805 year: 2020 ident: CR15 article-title: Similarity-learning information-fusion schemes for missing data imputation publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.06.013 – volume: 43 start-page: 614 issue: 3 year: 2015 end-page: 632 ident: CR19 article-title: Missing data imputation by K nearest neighbours based on grey relational structure and mutual information publication-title: Appl. Intell. doi: 10.1007/s10489-015-0666-x – volume: 123 start-page: 2245 issue: 3 year: 2022 end-page: 2259 ident: CR38 article-title: A framework for data prediction and forecasting in WSN with auto ARIMA publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-021-09237-x – volume: 237 start-page: 49 year: 2013 end-page: 58 ident: CR34 article-title: A dynamic programming approach to missing data estimation using neural networks publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.10.008 – volume: 168 start-page: 1125 year: 2021 ident: CR27 article-title: RESI: a region-splitting imputation method for different types of missing data publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114425 – volume: 9 start-page: 1301 issue: 3 year: 2019 ident: CR9 article-title: Hyperparameters and tuning strategies for random forest publication-title: Wiley Interdiscip. Rev. doi: 10.1002/widm.1301 – volume: 103 start-page: 107167 year: 2021 ident: CR26 article-title: Modulo 9 model-based learning for missing data imputation publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107167 – volume: 14 start-page: 853 issue: 5 year: 2001 end-page: 871 ident: CR14 article-title: Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values publication-title: J. Clim. doi: 10.1175/1520-0442(2001)014<0853:AOICDE>2.0.CO;2 – volume: 223 start-page: 104518 year: 2022 ident: CR5 article-title: NMVI: a data-splitting based imputation technique for distinct types of missing data publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2022.104518 – year: 2021 ident: CR23 article-title: Imputation using information fusion technique for sensor generated incomplete data with high missing gap publication-title: Microprocess. Microsyst. doi: 10.1016/j.micpro.2020.103636 – year: 2004 ident: CR32 article-title: Using association rules for completing missing data publication-title: Fourth Int. Conf. Hybrid Intell. Syst. doi: 10.1109/ICHIS.2004.91 – volume: 156 start-page: 134 year: 2015 end-page: 142 ident: CR11 article-title: Data imputation via evolutionary computation, clustering and a neural network publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.12.073 – volume: 179 start-page: 764 issue: 6 year: 2014 end-page: 774 ident: CR41 article-title: Comparison of random forest and parametric imputation models for imputing missing data using MICE: a CALIBER study publication-title: Am. J. Epidemiol. doi: 10.1093/aje/kwt312 – start-page: 59 year: 2015 end-page: 139 ident: CR3 publication-title: Data Preprocessing in Data Mining doi: 10.1007/978-3-319-10247-4 – volume: 233 start-page: 25 year: 2013 end-page: 35 ident: CR36 article-title: A hybrid method for imputation of missing values using optimized fuzzy c-means with support vector regression and a genetic algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2013.01.021 – volume: 14 start-page: 1 issue: 1 year: 2022 end-page: 20 ident: CR4 article-title: Missing data imputation: a survey publication-title: Int. J. Decis. Support Syst. Technol. (IJDSST) doi: 10.4018/IJDSST.292446 – volume: 5 start-page: 403 issue: 3 year: 2018 end-page: 416 ident: CR2 article-title: Evaluating performance of missing data imputation methods in IRT analyses publication-title: Int. J. Assess. Tools Educ. doi: 10.21449/ijate.430720 – volume: 40 start-page: 1847 issue: 5 year: 2013 end-page: 1857 ident: CR39 article-title: Effects of data set features on the performances of classification algorithms publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.09.017 – volume: 12 start-page: 61 issue: 1 year: 2017 end-page: 74 ident: CR8 article-title: A class based clustering approach for imputation and mining of medical records (CBC-IM) publication-title: IADIS Int. J. Comput. Sci. Inf. Syst. – volume: 4 start-page: 67 year: 2021 end-page: 84 ident: CR28 article-title: A robust deep learning model for missing value imputation in big NCDC dataset publication-title: Iran J. Comput. Sci. doi: 10.1007/s42044-020-00065-z – volume: 64 start-page: 402 issue: 5 year: 2013 ident: CR1 article-title: The prevention and handling of the missing data publication-title: Korean J. Anesthesiol. doi: 10.4097/kjae.2013.64.5.402 – volume: 48 start-page: 5 issue: 1 year: 2010 end-page: 37 ident: CR6 article-title: An introduction to modern missing data analyses publication-title: J. Sch. Psychol. doi: 10.1016/j.jsp.2009.10.001 – volume: 108 start-page: 2282 year: 2017 end-page: 2286 ident: CR17 article-title: Column-wise guided data imputation publication-title: Proced. Comput. Sci. doi: 10.1016/j.procs.2017.05.008 – volume: 91 start-page: 106249 year: 2020 ident: CR22 article-title: Estimating missing data using novel correlation maximization based methods publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106249 – volume: 31 start-page: 175 issue: 2 year: 2019 end-page: 184 ident: CR37 article-title: A hybrid Bayesian network and tensor factorization approach for missing value imputation to improve breast cancer recurrence prediction publication-title: J. King Saud Univ. Comput. Inf. Sci. doi: 10.1016/j.jksuci.2018.01.002 – volume: 141 start-page: 112926 year: 2020 ident: CR24 article-title: Multivariable data imputation for the analysis of incomplete credit data publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.112926 – volume: 196 start-page: 105803 year: 2020 ident: CR25 article-title: Toward semantic data imputation for a dengue dataset publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105803 – volume: 37 start-page: 1322 issue: 9 year: 2021 end-page: 1331 ident: CR10 article-title: Missing data in clinical research: a tutorial on multiple imputation publication-title: Can. J. Cardiol. doi: 10.1016/j.cjca.2020.11.010 – year: 2023 ident: CR31 article-title: Missing value imputation using weighted KNN and genetic algorithm publication-title: ICT Analysis and Applications. Lecture Notes in Networks and Systems, Vol 517 doi: 10.1007/978-981-19-5224-1_18 – volume: 51 start-page: 29 year: 2015 end-page: 40 ident: CR35 article-title: A hybrid approach to integrate fuzzy C-means based imputation method with genetic algorithm for missing traffic volume data estimation publication-title: Transp. Res. Part C doi: 10.1016/j.trc.2014.11.003 – year: 2022 ident: CR30 article-title: An approach based on feature selection for missing value imputation publication-title: Intelligent and Fuzzy Techniques for Emerging Conditions and Digital Transformation INFUS 2021. Lecture Notes in Networks and Systems, Vol 307 doi: 10.1007/978-3-030-85626-7_110 – volume: 4 start-page: 182 issue: 3 year: 2019 end-page: 200 ident: CR18 article-title: Imputing missing values using cumulative linear regression publication-title: CAAI Trans. Intell. Technol. doi: 10.1049/trit.2019.0032 – volume: 10 start-page: 363 issue: 6 year: 2017 end-page: 377 ident: CR16 article-title: Random forest missing data algorithms publication-title: Stat. Anal. Data Min. doi: 10.1002/sam.11348 – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: CR43 article-title: Scikit-learn: machine learning in python publication-title: J. Mach. Learn. Res. – volume: 29 start-page: 65 year: 2015 end-page: 74 ident: CR20 article-title: Single imputation with multilayer perceptron and multiple imputation combining multilayer perceptron and k-nearest neighbours for monotone patterns publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.09.052 – volume: 45 start-page: 1 year: 2011 end-page: 67 ident: CR42 article-title: mice: Multivariate imputation by chained equations in R publication-title: J. Stat. Softw. doi: 10.18637/jss.v045.i03 – volume: 12 start-page: 1594 issue: 10 year: 2020 ident: CR21 article-title: CBRL and CBRC: Novel algorithms for improving missing value imputation accuracy based on Bayesian ridge regression publication-title: Symmetry doi: 10.3390/sym12101594 – volume: 68 start-page: 126 year: 2015 end-page: 131 ident: CR13 article-title: Multi-objective genetic algorithm for missing data imputation publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2015.08.023 – volume: 133 start-page: 107 year: 2017 end-page: 121 ident: CR12 article-title: Heuristically repopulated Bayesian ant colony optimization for treating missing values in large databases publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.06.033 – year: 2023 ident: CR29 article-title: Left-censored missing value imputation approach for MS-based proteomics data with GSimp publication-title: Statistical Analysis of Proteomic Data. Methods in Molecular Biology, Vol 2426 doi: 10.1007/978-1-0716-1967-4_6 – volume: 151 start-page: 124 year: 2018 end-page: 135 ident: CR7 article-title: A class center based approach for missing value imputation publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.03.026 – volume: 3 start-page: 244 year: 2007 end-page: 249 ident: CR33 article-title: An novel association rule mining based missing nominal data imputation method publication-title: Eighth ACIS Int. Conf. Softw. Eng. Artif. Intell. Netw. Parallel/Distrib. Comput. doi: 10.1109/SNPD.2007.93 – volume: 37 start-page: 1322 issue: 9 year: 2021 ident: 154_CR10 publication-title: Can. J. Cardiol. doi: 10.1016/j.cjca.2020.11.010 – volume: 46 start-page: 485 year: 2016 ident: 154_CR40 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.11.004 – year: 2021 ident: 154_CR23 publication-title: Microprocess. Microsyst. doi: 10.1016/j.micpro.2020.103636 – volume: 237 start-page: 49 year: 2013 ident: 154_CR34 publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.10.008 – volume: 156 start-page: 134 year: 2015 ident: 154_CR11 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.12.073 – volume: 187 start-page: 104805 year: 2020 ident: 154_CR15 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.06.013 – volume: 43 start-page: 614 issue: 3 year: 2015 ident: 154_CR19 publication-title: Appl. Intell. doi: 10.1007/s10489-015-0666-x – volume: 29 start-page: 65 year: 2015 ident: 154_CR20 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.09.052 – volume: 31 start-page: 175 issue: 2 year: 2019 ident: 154_CR37 publication-title: J. King Saud Univ. Comput. Inf. Sci. doi: 10.1016/j.jksuci.2018.01.002 – volume: 223 start-page: 104518 year: 2022 ident: 154_CR5 publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2022.104518 – volume: 133 start-page: 107 year: 2017 ident: 154_CR12 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.06.033 – volume: 68 start-page: 126 year: 2015 ident: 154_CR13 publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2015.08.023 – volume: 14 start-page: 1 issue: 1 year: 2022 ident: 154_CR4 publication-title: Int. J. Decis. Support Syst. Technol. (IJDSST) doi: 10.4018/IJDSST.292446 – volume: 4 start-page: 67 year: 2021 ident: 154_CR28 publication-title: Iran J. Comput. Sci. doi: 10.1007/s42044-020-00065-z – volume: 12 start-page: 1594 issue: 10 year: 2020 ident: 154_CR21 publication-title: Symmetry doi: 10.3390/sym12101594 – volume: 12 start-page: 2825 year: 2011 ident: 154_CR43 publication-title: J. Mach. Learn. Res. – volume: 123 start-page: 2245 issue: 3 year: 2022 ident: 154_CR38 publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-021-09237-x – volume: 233 start-page: 25 year: 2013 ident: 154_CR36 publication-title: Inf. Sci. doi: 10.1016/j.ins.2013.01.021 – volume: 168 start-page: 1125 year: 2021 ident: 154_CR27 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114425 – volume: 5 start-page: 403 issue: 3 year: 2018 ident: 154_CR2 publication-title: Int. J. Assess. Tools Educ. doi: 10.21449/ijate.430720 – volume: 64 start-page: 402 issue: 5 year: 2013 ident: 154_CR1 publication-title: Korean J. Anesthesiol. doi: 10.4097/kjae.2013.64.5.402 – volume: 40 start-page: 1847 issue: 5 year: 2013 ident: 154_CR39 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.09.017 – volume-title: Statistical Analysis of Proteomic Data. Methods in Molecular Biology, Vol 2426 year: 2023 ident: 154_CR29 doi: 10.1007/978-1-0716-1967-4_6 – volume-title: ICT Analysis and Applications. Lecture Notes in Networks and Systems, Vol 517 year: 2023 ident: 154_CR31 doi: 10.1007/978-981-19-5224-1_18 – volume: 91 start-page: 106249 year: 2020 ident: 154_CR22 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106249 – volume: 10 start-page: 363 issue: 6 year: 2017 ident: 154_CR16 publication-title: Stat. Anal. Data Min. doi: 10.1002/sam.11348 – volume: 179 start-page: 764 issue: 6 year: 2014 ident: 154_CR41 publication-title: Am. J. Epidemiol. doi: 10.1093/aje/kwt312 – volume: 108 start-page: 2282 year: 2017 ident: 154_CR17 publication-title: Proced. Comput. Sci. doi: 10.1016/j.procs.2017.05.008 – volume-title: Intelligent and Fuzzy Techniques for Emerging Conditions and Digital Transformation INFUS 2021. Lecture Notes in Networks and Systems, Vol 307 year: 2022 ident: 154_CR30 doi: 10.1007/978-3-030-85626-7_110 – volume: 45 start-page: 1 year: 2011 ident: 154_CR42 publication-title: J. Stat. Softw. doi: 10.18637/jss.v045.i03 – volume: 48 start-page: 5 issue: 1 year: 2010 ident: 154_CR6 publication-title: J. Sch. Psychol. doi: 10.1016/j.jsp.2009.10.001 – volume: 12 start-page: 61 issue: 1 year: 2017 ident: 154_CR8 publication-title: IADIS Int. J. Comput. Sci. Inf. Syst. – volume: 141 start-page: 112926 year: 2020 ident: 154_CR24 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.112926 – volume: 196 start-page: 105803 year: 2020 ident: 154_CR25 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105803 – volume: 151 start-page: 124 year: 2018 ident: 154_CR7 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.03.026 – year: 2004 ident: 154_CR32 publication-title: Fourth Int. Conf. Hybrid Intell. Syst. doi: 10.1109/ICHIS.2004.91 – volume: 14 start-page: 853 issue: 5 year: 2001 ident: 154_CR14 publication-title: J. Clim. doi: 10.1175/1520-0442(2001)014<0853:AOICDE>2.0.CO;2 – start-page: 59 volume-title: Data Preprocessing in Data Mining year: 2015 ident: 154_CR3 doi: 10.1007/978-3-319-10247-4 – volume: 51 start-page: 29 year: 2015 ident: 154_CR35 publication-title: Transp. Res. Part C doi: 10.1016/j.trc.2014.11.003 – volume: 4 start-page: 182 issue: 3 year: 2019 ident: 154_CR18 publication-title: CAAI Trans. Intell. Technol. doi: 10.1049/trit.2019.0032 – volume: 3 start-page: 244 year: 2007 ident: 154_CR33 publication-title: Eighth ACIS Int. Conf. Softw. Eng. Artif. Intell. Netw. Parallel/Distrib. Comput. doi: 10.1109/SNPD.2007.93 – volume: 103 start-page: 107167 year: 2021 ident: 154_CR26 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107167 – volume: 9 start-page: 1301 issue: 3 year: 2019 ident: 154_CR9 publication-title: Wiley Interdiscip. Rev. doi: 10.1002/widm.1301 |
| SSID | ssj0002734726 ssib031263613 |
| Score | 2.2824693 |
| Snippet | In today’s world, our heavy reliance on digital devices for data collection has become the norm. However, when these devices fail, there is a significant risk... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 13 |
| SubjectTerms | Algorithms Artificial Intelligence Computer Science Computer Systems Organization and Communication Networks Data analysis Data collection Data mining Data Structures and Information Theory Datasets Mathematics of Computing Missing data Real time Root-mean-square errors Software Engineering/Programming and Operating Systems Theory of Computation |
| SummonAdditionalLinks | – databaseName: SpringerLink Contemporary (1997 - Present) dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWgMLBQPkWhIA9sYMmxncQZK0TVqUJ8qVvkJBcoKilqQn8_5zRuBQIkmGM70fns9y4-vyPkPPECo1IlWCLSnCnNfWY0z5jxwoAbyC0FrotNhMOhHo2im-ZSWOmy3d2RZL1TLy-7KcGVYogxrAZ-Fq2TDYQ7bZfj7d2j8yLpiUA6kHppBFzCuu6a8DFW0krq5vbM98N-RqgV7fxyUloDUL_9v0_fIdsN4aS9hYfskjUo9kjbFXOgzdreJ4MeLaZzmFAzeZrOxtXzK0U-S8e2Hb6LIlGk6BP21wK1CuFQ0nFBrbaD1ReugNpc0xKq8oA89K_vrwasKbPAUiFVxAKuE8j8JNRIbSKtDZKsDOPWEMIchM65Mdwg6_NMEuJkSmWCIEozmcuM68wDeUhaxbSAI0IzjBaTRPoaclARTxD6gEPuaQgCCHnUIZ4zbZw2GuS2FMYkXqon16aK0VRxbaoY-1ws-7wtFDh-bd11MxY3q7GMJcZNQiI34h1y6WZo9fjn0Y7_1vyEbAnkPIsUtS5pVbN3OCWb6bwal7Oz2ks_ANi03Kw priority: 102 providerName: Springer Nature |
| Title | A novel algorithm for imputing the missing values in incomplete datasets |
| URI | https://link.springer.com/article/10.1007/s42044-023-00154-9 https://www.proquest.com/docview/3255237500 |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2520-8446 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0002734726 issn: 2520-8438 databaseCode: K7- dateStart: 20230301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2520-8446 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0002734726 issn: 2520-8438 databaseCode: BENPR dateStart: 20230301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 2520-8446 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002734726 issn: 2520-8438 databaseCode: RSV dateStart: 20180401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9swGLZGuwOXlQ0QX6t82I1Z81dj54TYBEJCqqqOTdwiJ3kDRSUFkvH7ee06VEyCC5dcEltJntd-H389DyHfcpE4XWjJcllUTFs-Ys7ykjlhEu6g8hQ4mE2Y8dheXqaTOOHWxG2VXZ8YOupyUfg58h8Kua9UmN_40d09865RfnU1Wmiskb6QUvg4PzesiyclZKK6dHUTpVxMcGCTIxw1Wa1sPEcTTtNpybVmmMRYYBYsfZmrVgT0vzXTkIpOB-_9iA3yKZJQeryMms_kA9RfyKAzeKCxvW-Ss2NaLx5hTt38Cqtpr28pclw688_hm1EkjxTjxE83UK8aDg2d1dTrPXjN4Rao33_aQNtskT-nJxe_zli0XmCFVDplCbc5lKPcWKQ7qbUOiVeJY1kDpgJpK-4cd8gEhcsNAqy0S5K0KFWlSm5LAWqb9OpFDTuEljiCzHM1slCBTnmO6RA4VMJCkoDh6S4R3U_OiqhL7u0x5tmzonIAJkNgsgBMhmUOn8vcLVU53nz6oEMjiy20yVZQ7JLvHZ6r26_Xtvd2bftkXSLvWW5TOyC99uEffCUfi8d21jwMSf_nyXgyHYY4xev0998nxybpDg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTxQxFH-BhQQvoggRRelBTtLQabvTzsEYVMgScEMMJNzGzswbXbPO4s6I8Z_yb_R1dsoGE7hx8Dxt0-n7-r1-vB_AqyyKnc615JnMS66t6HNnRcFdZGLhsPQQuCWbMMOhvbhIThfgT3gL469VBp_YOupikvs98j1F2Fcqim_i7eUP7lmj_OlqoNCYqcUx_v5FKVv95ugDyXdHysODs_cD3rEK8FwqnfBY2AyLfmYsRfLEWkeYoqA0zaApUdpSOCccgZzIZYbmrrSL4yQvVKkKYYsIFY27CEtaaUN2tfTuYHj6KWiwimSsQoD81hWPMS3nm-xTnma1st3Lnfb9npZCa05hk7dYhic3o-Mc8v5zStsGv8PV_23ZHsHDDmaz_ZldPIYFrNZgNVBYsM6jPYHBPqsmVzhmbvyFpt18_c4IxbORb0crwQgeM7IEv6HCfF10rNmoYr6iha-q3CDzN2xrbOp1OL-X_9mAXjWp8CmwgnLkLFN9iyXqRGQU8FFgGVmMYzQi2YQoCDXNu8rrngBknF7XjG4VISVFSFtFSKnP6-s-l7O6I3e23grSTzsfVKdz0W_CbtCf-efbR3t292jbsDI4-3iSnhwNj5_DA0kob3Ypbwt6zfQnvoDl_KoZ1dOXnXUw-HzfmvUXXzVC8w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI54CXHhjXiTAzeIliZpmx4RMA2Bpkk8xK1KWxeKRofWwu_H6doNECAhznVS1Xbkz439mZDDyPGMipVgkYhTpjR3mdE8YcbxPW4gtRC4Gjbhd7v6_j7ofejir6rdmyvJUU-DZWnKy9ZLkrbGjW9KcKUYxhtWgQAWTJNZZYcG2Xz9-q7xKOkITzYB66kmc_GrGWzCxbxJK6nrTprvt_0crSYQ9MutaRWM2kv__4xlslgDUXoy8pwVMgX5KllqhjzQ-syvkc4JzQdv0Kem_zAYZuXjM0WcSzMrh--lCCAp-or95UAtczgUNMup5XywvMMlUFuDWkBZrJPb9vnNaYfV4xdYLKQKmMd1BIkb-RohT6C1QfCVYD7rg5-C0Ck3hhtEg46JfDSyVMbzgjiRqUy4ThyQG2QmH-SwSWiCWWQUSVdDCirgEYZE4JA6GjwPfB5sEadRcxjX3OR2REY_HLMqV6oKUVVhpaoQ1xyN17yMmDl-ld5trBfWp7QIJeZTQiJm4lvkuLHW5PHPu23_TfyAzPfO2uHVRfdyhywIhEWjKrZdMlMOX2GPzMVvZVYM9yvnfQficOh0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+algorithm+for+imputing+the+missing+values+in+incomplete+datasets&rft.jtitle=Iran+Journal+of+Computer+Science+%28Online%29&rft.au=Bhagat%2C+Hutashan+Vishal&rft.au=Singh%2C+Manminder&rft.date=2024-03-01&rft.pub=Springer+Nature+B.V&rft.issn=2520-8438&rft.eissn=2520-8446&rft.volume=7&rft.issue=1&rft.spage=13&rft.epage=23&rft_id=info:doi/10.1007%2Fs42044-023-00154-9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8438&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8438&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8438&client=summon |