Optimization of the Matrix Fourier-Filter for a Class of Nonlinear Optical Models with an Integral Objective Functional
We consider a new formulation of the Fourier-filtering problem that uses matrix Fourier-filters as the controls in nonlinear optical models described by quasi-linear functional-differential diffusion equations. Solvability of the control problem is proved for various classes of matrix Fourier-filter...
Gespeichert in:
| Veröffentlicht in: | Computational mathematics and modeling Jg. 31; H. 3; S. 320 - 337 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.07.2020
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1046-283X, 1573-837X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We consider a new formulation of the Fourier-filtering problem that uses matrix Fourier-filters as the controls in nonlinear optical models described by quasi-linear functional-differential diffusion equations. Solvability of the control problem is proved for various classes of matrix Fourier-filters with a time-integral objective functional. Differentiability of the functional with respect to the matrix Fourier-filter and convergence of a variant of the gradient projection method are proved. Examples of numerical simulation of controlled structure formation are presented, and the advantages of matrix Fourier-filters compared with traditional multiplier filters are demonstrated. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1046-283X 1573-837X |
| DOI: | 10.1007/s10598-020-09494-8 |