Optimization of the Matrix Fourier-Filter for a Class of Nonlinear Optical Models with an Integral Objective Functional

We consider a new formulation of the Fourier-filtering problem that uses matrix Fourier-filters as the controls in nonlinear optical models described by quasi-linear functional-differential diffusion equations. Solvability of the control problem is proved for various classes of matrix Fourier-filter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and modeling Jg. 31; H. 3; S. 320 - 337
Hauptverfasser: Sazonova, S. V., Razgulin, A. V.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.07.2020
Springer Nature B.V
Schlagworte:
ISSN:1046-283X, 1573-837X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a new formulation of the Fourier-filtering problem that uses matrix Fourier-filters as the controls in nonlinear optical models described by quasi-linear functional-differential diffusion equations. Solvability of the control problem is proved for various classes of matrix Fourier-filters with a time-integral objective functional. Differentiability of the functional with respect to the matrix Fourier-filter and convergence of a variant of the gradient projection method are proved. Examples of numerical simulation of controlled structure formation are presented, and the advantages of matrix Fourier-filters compared with traditional multiplier filters are demonstrated.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1046-283X
1573-837X
DOI:10.1007/s10598-020-09494-8