A Steady-State Genetic Algorithm for the Single Machine Scheduling Problem with Periodic Machine Availability

This paper presents an evolutionary algorithm-based steady-state grouping genetic algorithm (SSGGA) for the single-machine scheduling problem with periodic machine availability (SinMSPMA problem) whose objective is to minimize the makespan. This problem is N P -hard which arises in several real prod...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:SN computer science Ročník 4; číslo 5; s. 651
Hlavní autori: Chaubey, Punit Kumar, Sundar, Shyam
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Singapore Springer Nature Singapore 01.09.2023
Springer Nature B.V
Predmet:
ISSN:2661-8907, 2662-995X, 2661-8907
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper presents an evolutionary algorithm-based steady-state grouping genetic algorithm (SSGGA) for the single-machine scheduling problem with periodic machine availability (SinMSPMA problem) whose objective is to minimize the makespan. This problem is N P -hard which arises in several real production scenarios, where industries are giving importance of maintenance activities in their production scheduling systems due to not only improving the efficiency and safety of production, but also increasing the productivity. The SinMSPMA problem belongs to a class of grouping problems. Due to its grouping-aspect structure, the proposed SSGGA encodes each chromosome as a set of periods (groups) and relies on combining specialized genetic operators with a problem-specific repair operator in order to generate an offspring. On available benchmark instances, computational results of SSGGA indicate that SSGGA outperforms the best three approaches out of 19 existing approaches.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2661-8907
2662-995X
2661-8907
DOI:10.1007/s42979-023-02042-2