Automatic Modulation Classification for CR Using Deep Learning

Automatic Modulation Classification holds significant importance in the realm of wireless communication systems. The proliferation of modulation schemes, coupled with the escalating complexity of channel environments, necessitates a heightened accuracy in discerning modulated signals. Traditional me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SN computer science Jg. 5; H. 8; S. 1061
Hauptverfasser: Solanki, Surendra, Brahma, Banalaxmi, Singh, Yadvendra Pratap
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Singapore Springer Nature Singapore 01.12.2024
Springer Nature B.V
Schlagworte:
ISSN:2661-8907, 2662-995X, 2661-8907
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Automatic Modulation Classification holds significant importance in the realm of wireless communication systems. The proliferation of modulation schemes, coupled with the escalating complexity of channel environments, necessitates a heightened accuracy in discerning modulated signals. Traditional methods struggle to effectively classify this array of modulation schemes. In response, this paper advocates the employment of deep learning techniques for precise modulation classification. A deep learning architecture is introduced, comprising a convolutional neural network, and a long short-term memory neural network leveraging the power of transfer learning. The convolutional neural network adeptly extracts spatial features from the received signal, while a bidirectional long short-term memory neural network is engineered to capture temporal features. Transfer learning is employed for efficient parameter sharing. Empirical evaluations were conducted using the RadioML2016.10b dataset, affirming the efficacy of the proposed mechanism.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2661-8907
2662-995X
2661-8907
DOI:10.1007/s42979-024-03410-2