Efficient deterministic renewable energy forecasting guided by multiple-location weather data
Electricity generated from renewable energy sources has been established as an efficient remedy for both energy shortages and the environmental pollution stemming from conventional energy production methods. At current stage, hydropower remains the primary contributor to electricity generation among...
Uloženo v:
| Vydáno v: | Neural computing & applications Ročník 37; číslo 17; s. 10647 - 10674 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Springer London
01.06.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 0941-0643, 1433-3058 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Electricity generated from renewable energy sources has been established as an efficient remedy for both energy shortages and the environmental pollution stemming from conventional energy production methods. At current stage, hydropower remains the primary contributor to electricity generation among renewable energy sources. Nonetheless, solar and wind power are also recognized as dominant and exceptionally promising renewable energy sources. The accurate forecasting of the energy generation of those sources facilitates their integration into electric grids, by minimizing the negative impact of uncertainty regarding their management and operation. This paper proposes a novel methodology for deterministic wind and solar energy generation forecasting for multiple generation sites, utilizing multi-location weather forecasts. The method employs a U-shaped temporal convolutional auto-encoder (UTCAE) architecture for temporal processing of weather-related and energy-related time-series across each site. The multi-sized kernels convolutional spatiotemporal attention (MKST-Attention), inspired by the multi-head scaled dot product attention mechanism, is also proposed aiming to efficiently transfer temporal patterns from weather data to energy data, without a priori knowledge of the locations of the power stations and the locations of provided weather data. The conducted experimental evaluation on a day-ahead solar and wind energy forecasting scenario on five datasets demonstrated that the proposed method achieves top results, outperforming all competitive time-series forecasting state-of-the-art methods. In particular, in the AEMO-H dataset, encompassing hourly wind energy generation data alongside weather data from 22 power stations, the method attained the best mean absolute error (MAE), root mean square error (RMSE) and coefficient of determination (
R
2
) scores at each station. Additionally, it recorded the highest MAE of 0.098, the highest RMSE of 0.138 and the highest
R
2
score of 0.791, averaged across all energy stations. |
|---|---|
| AbstractList | Electricity generated from renewable energy sources has been established as an efficient remedy for both energy shortages and the environmental pollution stemming from conventional energy production methods. At current stage, hydropower remains the primary contributor to electricity generation among renewable energy sources. Nonetheless, solar and wind power are also recognized as dominant and exceptionally promising renewable energy sources. The accurate forecasting of the energy generation of those sources facilitates their integration into electric grids, by minimizing the negative impact of uncertainty regarding their management and operation. This paper proposes a novel methodology for deterministic wind and solar energy generation forecasting for multiple generation sites, utilizing multi-location weather forecasts. The method employs a U-shaped temporal convolutional auto-encoder (UTCAE) architecture for temporal processing of weather-related and energy-related time-series across each site. The multi-sized kernels convolutional spatiotemporal attention (MKST-Attention), inspired by the multi-head scaled dot product attention mechanism, is also proposed aiming to efficiently transfer temporal patterns from weather data to energy data, without a priori knowledge of the locations of the power stations and the locations of provided weather data. The conducted experimental evaluation on a day-ahead solar and wind energy forecasting scenario on five datasets demonstrated that the proposed method achieves top results, outperforming all competitive time-series forecasting state-of-the-art methods. In particular, in the AEMO-H dataset, encompassing hourly wind energy generation data alongside weather data from 22 power stations, the method attained the best mean absolute error (MAE), root mean square error (RMSE) and coefficient of determination (R2) scores at each station. Additionally, it recorded the highest MAE of 0.098, the highest RMSE of 0.138 and the highest R2 score of 0.791, averaged across all energy stations. Electricity generated from renewable energy sources has been established as an efficient remedy for both energy shortages and the environmental pollution stemming from conventional energy production methods. At current stage, hydropower remains the primary contributor to electricity generation among renewable energy sources. Nonetheless, solar and wind power are also recognized as dominant and exceptionally promising renewable energy sources. The accurate forecasting of the energy generation of those sources facilitates their integration into electric grids, by minimizing the negative impact of uncertainty regarding their management and operation. This paper proposes a novel methodology for deterministic wind and solar energy generation forecasting for multiple generation sites, utilizing multi-location weather forecasts. The method employs a U-shaped temporal convolutional auto-encoder (UTCAE) architecture for temporal processing of weather-related and energy-related time-series across each site. The multi-sized kernels convolutional spatiotemporal attention (MKST-Attention), inspired by the multi-head scaled dot product attention mechanism, is also proposed aiming to efficiently transfer temporal patterns from weather data to energy data, without a priori knowledge of the locations of the power stations and the locations of provided weather data. The conducted experimental evaluation on a day-ahead solar and wind energy forecasting scenario on five datasets demonstrated that the proposed method achieves top results, outperforming all competitive time-series forecasting state-of-the-art methods. In particular, in the AEMO-H dataset, encompassing hourly wind energy generation data alongside weather data from 22 power stations, the method attained the best mean absolute error (MAE), root mean square error (RMSE) and coefficient of determination ( R 2 ) scores at each station. Additionally, it recorded the highest MAE of 0.098, the highest RMSE of 0.138 and the highest R 2 score of 0.791, averaged across all energy stations. |
| Author | Nikolaidis, Nikos Symeonidis, Charalampos |
| Author_xml | – sequence: 1 givenname: Charalampos orcidid: 0000-0001-5927-6130 surname: Symeonidis fullname: Symeonidis, Charalampos email: charsyme@csd.auth.gr organization: Department of Informatics, Aristotle University of Thessaloniki – sequence: 2 givenname: Nikos surname: Nikolaidis fullname: Nikolaidis, Nikos organization: Department of Informatics, Aristotle University of Thessaloniki |
| BookMark | eNp9kEtLQzEQhYMo2Kp_wFXA9dW5Se5rKaU-QHCjSwl5TGrKbW5NUkr_vddWEFx0NQPnfDOHMyWnYQhIyHUJtyVAc5cAKlYWwERRQg1NwU7IpBScFxyq9pRMoBOjXAt-TqYpLQFA1G01IR9z57zxGDK1mDGufPApe0MjBtwq3SMdl7jYUTdENGrUwoIuNt6ipXpHV5s--3WPRT8Ylf0Q6BZV_sRIrcrqkpw51Se8-p0X5P1h_jZ7Kl5eH59n9y-FYVywgtkaTG0ZVo3j2rlGaQNKI9eq1dhoUWKlRaescFXtrDVNp3UjjGh53bWd5hfk5nB3HYevDaYsl8MmhvGl5KwUjNXQNaOrPbhMHFKK6KTxeR86R-V7WYL8KVMeypRjmXJfpmQjyv6h6-hXKu6OQ_wApdEcFhj_Uh2hvgFFTYtl |
| CitedBy_id | crossref_primary_10_1007_s00521_025_11546_2 |
| Cites_doi | 10.1016/j.egyr.2020.11.219 10.1016/j.ijforecast.2019.07.001 10.1016/j.rser.2022.112279 10.1016/j.ins.2020.11.035 10.1016/j.enconman.2018.02.087 10.35833/MPCE.2020.000849 10.1609/aaai.v35i10.17086 10.1016/j.energy.2020.117081 10.1109/IJCNN48605.2020.9206713 10.1016/j.rser.2018.09.046 10.1109/PECI.2016.7459241 10.1016/j.ijforecast.2021.03.012 10.1016/j.jclepro.2019.119476 10.1016/j.jclepro.2019.118447 10.1109/PMAPS.2010.5528983 10.1109/PTC.2019.8810672 10.1016/j.rser.2014.12.019 10.1007/978-3-319-24574-4_28 10.3390/en13153764 10.1007/978-3-031-26422-1_3 10.1002/pip.1033 10.1016/j.apenergy.2022.120127 10.1007/978-3-030-87101-7_22 10.1287/mnsc.23.7.768 10.1016/j.enpol.2012.10.046 10.3390/en12234490 10.1109/PES.2009.5276019 10.1007/s10994-019-05815-0 10.1109/ACCESS.2020.3024901 10.1109/ISCAS46773.2023.10182041 10.3390/app9061108 10.1109/OAJPE.2020.3029979 10.1016/j.enconman.2016.05.024 10.1016/j.ijleo.2021.168515 10.1007/978-3-031-34204-2_37 10.1023/A:1010933404324 10.1016/j.egyr.2022.02.184 10.1016/j.ijforecast.2016.02.001 10.1016/B978-0-12-819657-1.00001-3 10.1109/CCWC.2019.8666481 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Jun 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Jun 2025 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s00521-024-10607-2 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 10674 |
| ExternalDocumentID | 10_1007_s00521_024_10607_2 |
| GrantInformation_xml | – fundername: European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation grantid: T2EDK-03048 funderid: 50139 |
| GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PHGZM PHGZT PMFND PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~8M ~EX AAYXX ABFSG ABRTQ ACSTC AEZWR AFFHD AFHIU AHWEU AIXLP CITATION PQGLB |
| ID | FETCH-LOGICAL-c2342-2d60c6d2e57f3bff7abc0abe3ba8be7b41e5b49ad4f56fddc79bb74c4836989b3 |
| IEDL.DBID | RSV |
| ISSN | 0941-0643 |
| IngestDate | Wed Nov 05 09:26:48 EST 2025 Sat Nov 29 07:46:15 EST 2025 Tue Nov 18 22:44:12 EST 2025 Sun Jun 01 01:14:14 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Keywords | Deep learning Deterministic RES forecasting Time-series forecasting |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2342-2d60c6d2e57f3bff7abc0abe3ba8be7b41e5b49ad4f56fddc79bb74c4836989b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5927-6130 |
| PQID | 3214226097 |
| PQPubID | 2043988 |
| PageCount | 28 |
| ParticipantIDs | proquest_journals_3214226097 crossref_citationtrail_10_1007_s00521_024_10607_2 crossref_primary_10_1007_s00521_024_10607_2 springer_journals_10_1007_s00521_024_10607_2 |
| PublicationCentury | 2000 |
| PublicationDate | 20250600 2025-06-00 20250601 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 6 year: 2025 text: 20250600 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2025 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | A Ahmed (10607_CR17) 2019; 100 L Li (10607_CR48) 2020; 2 X Bai (10607_CR12) 2021; 2 10607_CR22 10607_CR28 J Widén (10607_CR4) 2015; 44 N Zhewen (10607_CR20) 2020; 196 MS Hossain (10607_CR14) 2020; 8 S Hanifi (10607_CR24) 2020; 13 D Salinas (10607_CR53) 2020; 36 T Hong (10607_CR42) 2016; 32 C Challu (10607_CR51) 2023; 37 J Simeunović (10607_CR32) 2022; 327 S-Y Shih (10607_CR35) 2019; 108 Y Liu (10607_CR26) 2019; 9 10607_CR36 X Dong (10607_CR13) 2022; 10 A Rai (10607_CR21) 2022; 252 10607_CR33 10607_CR34 10607_CR39 10607_CR37 10607_CR38 B Lim (10607_CR56) 2021; 37 T Hong (10607_CR25) 2020; 7 L Breiman (10607_CR49) 2001; 45 A Rahman (10607_CR3) 2022; 161 A Aghajani (10607_CR18) 2016; 121 10607_CR43 10607_CR41 10607_CR46 A Zeng (10607_CR54) 2023; 37 E Lorenz (10607_CR7) 2011; 19 10607_CR44 10607_CR45 Y Jung (10607_CR30) 2020; 250 J Jeong (10607_CR31) 2019; 12 10607_CR8 10607_CR9 10607_CR6 J Fan (10607_CR16) 2018; 164 J Dowell (10607_CR23) 2016; 7 10607_CR5 10607_CR2 Y Zhang (10607_CR40) 2021; 551 Z Ruijin (10607_CR27) 2020; 6 J Herzen (10607_CR47) 2022; 23 10607_CR10 10607_CR52 10607_CR11 10607_CR55 K Qu (10607_CR29) 2022; 8 M Höök (10607_CR1) 2013; 52 10607_CR19 L-L Li (10607_CR15) 2020; 242 GW Morrison (10607_CR50) 1977; 23 |
| References_xml | – volume: 6 start-page: 424 year: 2020 ident: 10607_CR27 publication-title: Energy Rep doi: 10.1016/j.egyr.2020.11.219 – ident: 10607_CR36 – ident: 10607_CR55 – volume: 36 start-page: 1181 issue: 3 year: 2020 ident: 10607_CR53 publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2019.07.001 – volume: 161 year: 2022 ident: 10607_CR3 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2022.112279 – volume: 551 start-page: 67 year: 2021 ident: 10607_CR40 publication-title: Inf Sci doi: 10.1016/j.ins.2020.11.035 – volume: 164 start-page: 102 year: 2018 ident: 10607_CR16 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.02.087 – volume: 10 start-page: 388 issue: 2 year: 2022 ident: 10607_CR13 publication-title: J Mod Power Syst Clean Energy doi: 10.35833/MPCE.2020.000849 – ident: 10607_CR41 doi: 10.1609/aaai.v35i10.17086 – ident: 10607_CR45 – volume: 196 year: 2020 ident: 10607_CR20 publication-title: Energy doi: 10.1016/j.energy.2020.117081 – ident: 10607_CR52 – ident: 10607_CR28 doi: 10.1109/IJCNN48605.2020.9206713 – volume: 100 start-page: 9 year: 2019 ident: 10607_CR17 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.09.046 – ident: 10607_CR22 doi: 10.1109/PECI.2016.7459241 – volume: 7 start-page: 763 issue: 2 year: 2016 ident: 10607_CR23 publication-title: IEEE Trans Smart Grid – volume: 37 start-page: 1748 issue: 4 year: 2021 ident: 10607_CR56 publication-title: Int J Forecasting doi: 10.1016/j.ijforecast.2021.03.012 – volume: 250 year: 2020 ident: 10607_CR30 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.119476 – volume: 242 year: 2020 ident: 10607_CR15 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.118447 – ident: 10607_CR8 – ident: 10607_CR11 doi: 10.1109/PMAPS.2010.5528983 – ident: 10607_CR19 doi: 10.1109/PTC.2019.8810672 – ident: 10607_CR46 – volume: 44 start-page: 356 year: 2015 ident: 10607_CR4 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.12.019 – ident: 10607_CR37 doi: 10.1007/978-3-319-24574-4_28 – volume: 37 start-page: 6989 issue: 6 year: 2023 ident: 10607_CR51 publication-title: Proc AAAI Conf Artif Intell – ident: 10607_CR38 – volume: 13 start-page: 3764 year: 2020 ident: 10607_CR24 publication-title: Energies doi: 10.3390/en13153764 – ident: 10607_CR39 doi: 10.1007/978-3-031-26422-1_3 – ident: 10607_CR5 – volume: 19 start-page: 757 issue: 7 year: 2011 ident: 10607_CR7 publication-title: Prog Photovoltaics Res Appl doi: 10.1002/pip.1033 – volume: 327 year: 2022 ident: 10607_CR32 publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.120127 – ident: 10607_CR43 doi: 10.1007/978-3-030-87101-7_22 – volume: 23 start-page: 768 issue: 7 year: 1977 ident: 10607_CR50 publication-title: Manage Sci doi: 10.1287/mnsc.23.7.768 – volume: 52 start-page: 797 year: 2013 ident: 10607_CR1 publication-title: Energy Policy doi: 10.1016/j.enpol.2012.10.046 – volume: 12 start-page: 4490 issue: 23 year: 2019 ident: 10607_CR31 publication-title: Energies doi: 10.3390/en12234490 – ident: 10607_CR9 doi: 10.1109/PES.2009.5276019 – volume: 108 start-page: 1421 year: 2019 ident: 10607_CR35 publication-title: Mach Learn doi: 10.1007/s10994-019-05815-0 – volume: 8 start-page: 172524 year: 2020 ident: 10607_CR14 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3024901 – ident: 10607_CR6 doi: 10.1109/ISCAS46773.2023.10182041 – ident: 10607_CR33 – volume: 9 start-page: 1108 issue: 6 year: 2019 ident: 10607_CR26 publication-title: Appl Sci doi: 10.3390/app9061108 – volume: 7 start-page: 376 year: 2020 ident: 10607_CR25 publication-title: IEEE Open Access J Power Energy doi: 10.1109/OAJPE.2020.3029979 – volume: 121 start-page: 232 year: 2016 ident: 10607_CR18 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.05.024 – volume: 252 year: 2022 ident: 10607_CR21 publication-title: Optik doi: 10.1016/j.ijleo.2021.168515 – ident: 10607_CR34 doi: 10.1007/978-3-031-34204-2_37 – volume: 2 start-page: 230 year: 2020 ident: 10607_CR48 publication-title: Proc Mach Learn Syst – volume: 45 start-page: 5 year: 2001 ident: 10607_CR49 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 37 start-page: 11121 issue: 9 year: 2023 ident: 10607_CR54 publication-title: Proc AAAI Conf Artif Intell – ident: 10607_CR44 – volume: 23 start-page: 5442 issue: 1 year: 2022 ident: 10607_CR47 publication-title: J Mach Learn Res – volume: 8 start-page: 483 year: 2022 ident: 10607_CR29 publication-title: Energy Rep doi: 10.1016/j.egyr.2022.02.184 – volume: 2 start-page: 114 year: 2021 ident: 10607_CR12 publication-title: J Eng – volume: 32 start-page: 896 issue: 3 year: 2016 ident: 10607_CR42 publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2016.02.001 – ident: 10607_CR2 doi: 10.1016/B978-0-12-819657-1.00001-3 – ident: 10607_CR10 doi: 10.1109/CCWC.2019.8666481 |
| SSID | ssj0004685 |
| Score | 2.3821065 |
| Snippet | Electricity generated from renewable energy sources has been established as an efficient remedy for both energy shortages and the environmental pollution... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 10647 |
| SubjectTerms | Alternative energy sources Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Datasets Electric power grids Electricity Energy resources Forecasting Image Processing and Computer Vision Meteorological data Power plants Probability and Statistics in Computer Science Production methods Renewable energy sources Renewable resources Root-mean-square errors S.I.: Timely Advances of Deep Learning with applications and Data Driven Modeling Solar energy Special Issue on Timely Advances of Deep Learning with applications and Data Driven Modeling Time series Weather forecasting Wind power |
| Title | Efficient deterministic renewable energy forecasting guided by multiple-location weather data |
| URI | https://link.springer.com/article/10.1007/s00521-024-10607-2 https://www.proquest.com/docview/3214226097 |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Journals New Starts & Take-Overs Collection customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SPXixPrFaJQdvurBNspvsUaTFUxFf9CIhr5WCVOm2Fv-9mTTbqqigt4XNhmWSzHxJ5psPoRPNcuB3lnC8pBJmjX8S1u9aFTGAnz1mF0Fsgvf7YjAoriIprKqz3esryeCpF2Q3OMH0nRDmXUee8sQ73lUf7gQINlzf3H9gQwYhTr9vgZweRiNV5vs-PoejJcb8ci0aok2v-b__3EQbEV3i8_l02EIrbrSNmrVyA44LeQc9dEPlCB9wsI35MKFgM4YClzNgU2EXSIHYY1pnVAXJ0fhxOrTOYv2G6zTEBEIhDC2ezaEkhozTXXTX695eXCZRaCExhAI9x-apyS1xGS-pLkuutEmVdlQroR3XrOMyzQplWZnlpbWGF1pzZpigoD-p6R5qjJ5Hbh9hTYUhKTdKlZS5Tl5kCiTWvV8kWqTOtlCntrc0sQo5iGE8yUX95GA_6e0ng_0kaaHTxTcv8xocv7Zu18Mo43qsJMgxeaCZFryFzuphW77-ubeDvzU_ROsEBILDMU0bNSbjqTtCa-Z1MqzGx2GevgNLiOHa |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFA2igr44P3E6NQ--aaFL0qZ9FNmYOIfolL1IyFdlIFPWzeG_NzdrNxUV9K3QNJSb5N6T5J57EDpWLAZ-ZwbHSzJgRrunxLhdqyQa8LPD7IkXm-CdTtLrpdcFKSwvs93LK0nvqWdkNzjBdJ0Q5lxHHPLAOd4l5iIWVMy_ub3_wIb0Qpxu3wI5PYwWVJnv-_gcjuYY88u1qI82zcr__nMdrRXoEp9Np8MGWrCDTVQplRtwsZC30EPDV45wAQebIh_GF2zGUOByAmwqbD0pEDtMa7XMITkaP477xhqs3nCZhhhAKIShxZMplMSQcbqN7pqN7nkrKIQWAk0o0HNMHOrYEBvxjKos41LpUCpLlUyU5YrVbaRYKg3LojgzRvNUKc40SyjoTyq6gxYHzwO7i7CiiSYh11JmlNl6nEYSJNadXyQqCa2ponppb6GLKuQghvEkZvWTvf2Es5_w9hOkik5m37xMa3D82rpWDqMo1mMuQI7JAc0w5VV0Wg7b_PXPve39rfkRWml1r9qifdG53EerBMSC_ZFNDS2OhmN7gJb166ifDw_9nH0H6hvkvg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yRXxxXnE6NQ--aVmXpk37KLqhKGPghb1IyVUGUscuDv-9OWm7TVFBfCs0PZRzcjlJvu98CJ0IGgG_08DxEveokvYpVnbXyomE_Nnm7LETm2CdTtzrJd0FFr9Du5dXkjmnAao0ZePGQJnGjPgGp5nWIKF2Gol85tlJeJkCkB7263ePC8xIJ8pp9zCA76FBQZv53sbnpWmeb365InUrT7v6_3_eQOtF1onP826yiZZ0toWqpaIDLgb4NnpquYoS1ihWBU7GFXLGUPhyCiwrrB1ZENtcV0s-AtA0fp70lVZYvOMSnujBEgkhx9M8xcSARN1BD-3W_cWVVwgweJIEQNtRkS8jRXTITCCMYVxInwsdCB4LzQRt6lDQhCtqwsgoJVkiBKOSxgHoUopgF1Wy10zvISyCWBKfSc5NQHUzSkIO0ut2viQi9rWqoWbp-1QW1clBJOMlndVVdv5Lrf9S57-U1NDp7JtBXpvj19b1MqRpMU5HKcg02QTUT1gNnZUhnL_-2dr-35ofo9XuZTu9ve7cHKA1AhrC7iSnjirj4UQfohX5Nu6Phkeu-34AuUftog |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+deterministic+renewable+energy+forecasting+guided+by+multiple-location+weather+data&rft.jtitle=Neural+computing+%26+applications&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=37&rft.issue=17&rft.spage=10647&rft.epage=10674&rft_id=info:doi/10.1007%2Fs00521-024-10607-2&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |