Efficient deterministic renewable energy forecasting guided by multiple-location weather data

Electricity generated from renewable energy sources has been established as an efficient remedy for both energy shortages and the environmental pollution stemming from conventional energy production methods. At current stage, hydropower remains the primary contributor to electricity generation among...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural computing & applications Ročník 37; číslo 17; s. 10647 - 10674
Hlavní autoři: Symeonidis, Charalampos, Nikolaidis, Nikos
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.06.2025
Springer Nature B.V
Témata:
ISSN:0941-0643, 1433-3058
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Electricity generated from renewable energy sources has been established as an efficient remedy for both energy shortages and the environmental pollution stemming from conventional energy production methods. At current stage, hydropower remains the primary contributor to electricity generation among renewable energy sources. Nonetheless, solar and wind power are also recognized as dominant and exceptionally promising renewable energy sources. The accurate forecasting of the energy generation of those sources facilitates their integration into electric grids, by minimizing the negative impact of uncertainty regarding their management and operation. This paper proposes a novel methodology for deterministic wind and solar energy generation forecasting for multiple generation sites, utilizing multi-location weather forecasts. The method employs a U-shaped temporal convolutional auto-encoder (UTCAE) architecture for temporal processing of weather-related and energy-related time-series across each site. The multi-sized kernels convolutional spatiotemporal attention (MKST-Attention), inspired by the multi-head scaled dot product attention mechanism, is also proposed aiming to efficiently transfer temporal patterns from weather data to energy data, without a priori knowledge of the locations of the power stations and the locations of provided weather data. The conducted experimental evaluation on a day-ahead solar and wind energy forecasting scenario on five datasets demonstrated that the proposed method achieves top results, outperforming all competitive time-series forecasting state-of-the-art methods. In particular, in the AEMO-H dataset, encompassing hourly wind energy generation data alongside weather data from 22 power stations, the method attained the best mean absolute error (MAE), root mean square error (RMSE) and coefficient of determination ( R 2 ) scores at each station. Additionally, it recorded the highest MAE of 0.098, the highest RMSE of 0.138 and the highest R 2 score of 0.791, averaged across all energy stations.
AbstractList Electricity generated from renewable energy sources has been established as an efficient remedy for both energy shortages and the environmental pollution stemming from conventional energy production methods. At current stage, hydropower remains the primary contributor to electricity generation among renewable energy sources. Nonetheless, solar and wind power are also recognized as dominant and exceptionally promising renewable energy sources. The accurate forecasting of the energy generation of those sources facilitates their integration into electric grids, by minimizing the negative impact of uncertainty regarding their management and operation. This paper proposes a novel methodology for deterministic wind and solar energy generation forecasting for multiple generation sites, utilizing multi-location weather forecasts. The method employs a U-shaped temporal convolutional auto-encoder (UTCAE) architecture for temporal processing of weather-related and energy-related time-series across each site. The multi-sized kernels convolutional spatiotemporal attention (MKST-Attention), inspired by the multi-head scaled dot product attention mechanism, is also proposed aiming to efficiently transfer temporal patterns from weather data to energy data, without a priori knowledge of the locations of the power stations and the locations of provided weather data. The conducted experimental evaluation on a day-ahead solar and wind energy forecasting scenario on five datasets demonstrated that the proposed method achieves top results, outperforming all competitive time-series forecasting state-of-the-art methods. In particular, in the AEMO-H dataset, encompassing hourly wind energy generation data alongside weather data from 22 power stations, the method attained the best mean absolute error (MAE), root mean square error (RMSE) and coefficient of determination (R2) scores at each station. Additionally, it recorded the highest MAE of 0.098, the highest RMSE of 0.138 and the highest R2 score of 0.791, averaged across all energy stations.
Electricity generated from renewable energy sources has been established as an efficient remedy for both energy shortages and the environmental pollution stemming from conventional energy production methods. At current stage, hydropower remains the primary contributor to electricity generation among renewable energy sources. Nonetheless, solar and wind power are also recognized as dominant and exceptionally promising renewable energy sources. The accurate forecasting of the energy generation of those sources facilitates their integration into electric grids, by minimizing the negative impact of uncertainty regarding their management and operation. This paper proposes a novel methodology for deterministic wind and solar energy generation forecasting for multiple generation sites, utilizing multi-location weather forecasts. The method employs a U-shaped temporal convolutional auto-encoder (UTCAE) architecture for temporal processing of weather-related and energy-related time-series across each site. The multi-sized kernels convolutional spatiotemporal attention (MKST-Attention), inspired by the multi-head scaled dot product attention mechanism, is also proposed aiming to efficiently transfer temporal patterns from weather data to energy data, without a priori knowledge of the locations of the power stations and the locations of provided weather data. The conducted experimental evaluation on a day-ahead solar and wind energy forecasting scenario on five datasets demonstrated that the proposed method achieves top results, outperforming all competitive time-series forecasting state-of-the-art methods. In particular, in the AEMO-H dataset, encompassing hourly wind energy generation data alongside weather data from 22 power stations, the method attained the best mean absolute error (MAE), root mean square error (RMSE) and coefficient of determination ( R 2 ) scores at each station. Additionally, it recorded the highest MAE of 0.098, the highest RMSE of 0.138 and the highest R 2 score of 0.791, averaged across all energy stations.
Author Nikolaidis, Nikos
Symeonidis, Charalampos
Author_xml – sequence: 1
  givenname: Charalampos
  orcidid: 0000-0001-5927-6130
  surname: Symeonidis
  fullname: Symeonidis, Charalampos
  email: charsyme@csd.auth.gr
  organization: Department of Informatics, Aristotle University of Thessaloniki
– sequence: 2
  givenname: Nikos
  surname: Nikolaidis
  fullname: Nikolaidis, Nikos
  organization: Department of Informatics, Aristotle University of Thessaloniki
BookMark eNp9kEtLQzEQhYMo2Kp_wFXA9dW5Se5rKaU-QHCjSwl5TGrKbW5NUkr_vddWEFx0NQPnfDOHMyWnYQhIyHUJtyVAc5cAKlYWwERRQg1NwU7IpBScFxyq9pRMoBOjXAt-TqYpLQFA1G01IR9z57zxGDK1mDGufPApe0MjBtwq3SMdl7jYUTdENGrUwoIuNt6ipXpHV5s--3WPRT8Ylf0Q6BZV_sRIrcrqkpw51Se8-p0X5P1h_jZ7Kl5eH59n9y-FYVywgtkaTG0ZVo3j2rlGaQNKI9eq1dhoUWKlRaescFXtrDVNp3UjjGh53bWd5hfk5nB3HYevDaYsl8MmhvGl5KwUjNXQNaOrPbhMHFKK6KTxeR86R-V7WYL8KVMeypRjmXJfpmQjyv6h6-hXKu6OQ_wApdEcFhj_Uh2hvgFFTYtl
CitedBy_id crossref_primary_10_1007_s00521_025_11546_2
Cites_doi 10.1016/j.egyr.2020.11.219
10.1016/j.ijforecast.2019.07.001
10.1016/j.rser.2022.112279
10.1016/j.ins.2020.11.035
10.1016/j.enconman.2018.02.087
10.35833/MPCE.2020.000849
10.1609/aaai.v35i10.17086
10.1016/j.energy.2020.117081
10.1109/IJCNN48605.2020.9206713
10.1016/j.rser.2018.09.046
10.1109/PECI.2016.7459241
10.1016/j.ijforecast.2021.03.012
10.1016/j.jclepro.2019.119476
10.1016/j.jclepro.2019.118447
10.1109/PMAPS.2010.5528983
10.1109/PTC.2019.8810672
10.1016/j.rser.2014.12.019
10.1007/978-3-319-24574-4_28
10.3390/en13153764
10.1007/978-3-031-26422-1_3
10.1002/pip.1033
10.1016/j.apenergy.2022.120127
10.1007/978-3-030-87101-7_22
10.1287/mnsc.23.7.768
10.1016/j.enpol.2012.10.046
10.3390/en12234490
10.1109/PES.2009.5276019
10.1007/s10994-019-05815-0
10.1109/ACCESS.2020.3024901
10.1109/ISCAS46773.2023.10182041
10.3390/app9061108
10.1109/OAJPE.2020.3029979
10.1016/j.enconman.2016.05.024
10.1016/j.ijleo.2021.168515
10.1007/978-3-031-34204-2_37
10.1023/A:1010933404324
10.1016/j.egyr.2022.02.184
10.1016/j.ijforecast.2016.02.001
10.1016/B978-0-12-819657-1.00001-3
10.1109/CCWC.2019.8666481
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Jun 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Jun 2025
DBID AAYXX
CITATION
DOI 10.1007/s00521-024-10607-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 10674
ExternalDocumentID 10_1007_s00521_024_10607_2
GrantInformation_xml – fundername: European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation
  grantid: T2EDK-03048
  funderid: 50139
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PMFND
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~8M
~EX
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFFHD
AFHIU
AHWEU
AIXLP
CITATION
PQGLB
ID FETCH-LOGICAL-c2342-2d60c6d2e57f3bff7abc0abe3ba8be7b41e5b49ad4f56fddc79bb74c4836989b3
IEDL.DBID RSV
ISSN 0941-0643
IngestDate Wed Nov 05 09:26:48 EST 2025
Sat Nov 29 07:46:15 EST 2025
Tue Nov 18 22:44:12 EST 2025
Sun Jun 01 01:14:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords Deep learning
Deterministic RES forecasting
Time-series forecasting
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2342-2d60c6d2e57f3bff7abc0abe3ba8be7b41e5b49ad4f56fddc79bb74c4836989b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5927-6130
PQID 3214226097
PQPubID 2043988
PageCount 28
ParticipantIDs proquest_journals_3214226097
crossref_citationtrail_10_1007_s00521_024_10607_2
crossref_primary_10_1007_s00521_024_10607_2
springer_journals_10_1007_s00521_024_10607_2
PublicationCentury 2000
PublicationDate 20250600
2025-06-00
20250601
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 6
  year: 2025
  text: 20250600
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References A Ahmed (10607_CR17) 2019; 100
L Li (10607_CR48) 2020; 2
X Bai (10607_CR12) 2021; 2
10607_CR22
10607_CR28
J Widén (10607_CR4) 2015; 44
N Zhewen (10607_CR20) 2020; 196
MS Hossain (10607_CR14) 2020; 8
S Hanifi (10607_CR24) 2020; 13
D Salinas (10607_CR53) 2020; 36
T Hong (10607_CR42) 2016; 32
C Challu (10607_CR51) 2023; 37
J Simeunović (10607_CR32) 2022; 327
S-Y Shih (10607_CR35) 2019; 108
Y Liu (10607_CR26) 2019; 9
10607_CR36
X Dong (10607_CR13) 2022; 10
A Rai (10607_CR21) 2022; 252
10607_CR33
10607_CR34
10607_CR39
10607_CR37
10607_CR38
B Lim (10607_CR56) 2021; 37
T Hong (10607_CR25) 2020; 7
L Breiman (10607_CR49) 2001; 45
A Rahman (10607_CR3) 2022; 161
A Aghajani (10607_CR18) 2016; 121
10607_CR43
10607_CR41
10607_CR46
A Zeng (10607_CR54) 2023; 37
E Lorenz (10607_CR7) 2011; 19
10607_CR44
10607_CR45
Y Jung (10607_CR30) 2020; 250
J Jeong (10607_CR31) 2019; 12
10607_CR8
10607_CR9
10607_CR6
J Fan (10607_CR16) 2018; 164
J Dowell (10607_CR23) 2016; 7
10607_CR5
10607_CR2
Y Zhang (10607_CR40) 2021; 551
Z Ruijin (10607_CR27) 2020; 6
J Herzen (10607_CR47) 2022; 23
10607_CR10
10607_CR52
10607_CR11
10607_CR55
K Qu (10607_CR29) 2022; 8
M Höök (10607_CR1) 2013; 52
10607_CR19
L-L Li (10607_CR15) 2020; 242
GW Morrison (10607_CR50) 1977; 23
References_xml – volume: 6
  start-page: 424
  year: 2020
  ident: 10607_CR27
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2020.11.219
– ident: 10607_CR36
– ident: 10607_CR55
– volume: 36
  start-page: 1181
  issue: 3
  year: 2020
  ident: 10607_CR53
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2019.07.001
– volume: 161
  year: 2022
  ident: 10607_CR3
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2022.112279
– volume: 551
  start-page: 67
  year: 2021
  ident: 10607_CR40
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.11.035
– volume: 164
  start-page: 102
  year: 2018
  ident: 10607_CR16
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.02.087
– volume: 10
  start-page: 388
  issue: 2
  year: 2022
  ident: 10607_CR13
  publication-title: J Mod Power Syst Clean Energy
  doi: 10.35833/MPCE.2020.000849
– ident: 10607_CR41
  doi: 10.1609/aaai.v35i10.17086
– ident: 10607_CR45
– volume: 196
  year: 2020
  ident: 10607_CR20
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117081
– ident: 10607_CR52
– ident: 10607_CR28
  doi: 10.1109/IJCNN48605.2020.9206713
– volume: 100
  start-page: 9
  year: 2019
  ident: 10607_CR17
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.09.046
– ident: 10607_CR22
  doi: 10.1109/PECI.2016.7459241
– volume: 7
  start-page: 763
  issue: 2
  year: 2016
  ident: 10607_CR23
  publication-title: IEEE Trans Smart Grid
– volume: 37
  start-page: 1748
  issue: 4
  year: 2021
  ident: 10607_CR56
  publication-title: Int J Forecasting
  doi: 10.1016/j.ijforecast.2021.03.012
– volume: 250
  year: 2020
  ident: 10607_CR30
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.119476
– volume: 242
  year: 2020
  ident: 10607_CR15
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.118447
– ident: 10607_CR8
– ident: 10607_CR11
  doi: 10.1109/PMAPS.2010.5528983
– ident: 10607_CR19
  doi: 10.1109/PTC.2019.8810672
– ident: 10607_CR46
– volume: 44
  start-page: 356
  year: 2015
  ident: 10607_CR4
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.12.019
– ident: 10607_CR37
  doi: 10.1007/978-3-319-24574-4_28
– volume: 37
  start-page: 6989
  issue: 6
  year: 2023
  ident: 10607_CR51
  publication-title: Proc AAAI Conf Artif Intell
– ident: 10607_CR38
– volume: 13
  start-page: 3764
  year: 2020
  ident: 10607_CR24
  publication-title: Energies
  doi: 10.3390/en13153764
– ident: 10607_CR39
  doi: 10.1007/978-3-031-26422-1_3
– ident: 10607_CR5
– volume: 19
  start-page: 757
  issue: 7
  year: 2011
  ident: 10607_CR7
  publication-title: Prog Photovoltaics Res Appl
  doi: 10.1002/pip.1033
– volume: 327
  year: 2022
  ident: 10607_CR32
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.120127
– ident: 10607_CR43
  doi: 10.1007/978-3-030-87101-7_22
– volume: 23
  start-page: 768
  issue: 7
  year: 1977
  ident: 10607_CR50
  publication-title: Manage Sci
  doi: 10.1287/mnsc.23.7.768
– volume: 52
  start-page: 797
  year: 2013
  ident: 10607_CR1
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2012.10.046
– volume: 12
  start-page: 4490
  issue: 23
  year: 2019
  ident: 10607_CR31
  publication-title: Energies
  doi: 10.3390/en12234490
– ident: 10607_CR9
  doi: 10.1109/PES.2009.5276019
– volume: 108
  start-page: 1421
  year: 2019
  ident: 10607_CR35
  publication-title: Mach Learn
  doi: 10.1007/s10994-019-05815-0
– volume: 8
  start-page: 172524
  year: 2020
  ident: 10607_CR14
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3024901
– ident: 10607_CR6
  doi: 10.1109/ISCAS46773.2023.10182041
– ident: 10607_CR33
– volume: 9
  start-page: 1108
  issue: 6
  year: 2019
  ident: 10607_CR26
  publication-title: Appl Sci
  doi: 10.3390/app9061108
– volume: 7
  start-page: 376
  year: 2020
  ident: 10607_CR25
  publication-title: IEEE Open Access J Power Energy
  doi: 10.1109/OAJPE.2020.3029979
– volume: 121
  start-page: 232
  year: 2016
  ident: 10607_CR18
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.05.024
– volume: 252
  year: 2022
  ident: 10607_CR21
  publication-title: Optik
  doi: 10.1016/j.ijleo.2021.168515
– ident: 10607_CR34
  doi: 10.1007/978-3-031-34204-2_37
– volume: 2
  start-page: 230
  year: 2020
  ident: 10607_CR48
  publication-title: Proc Mach Learn Syst
– volume: 45
  start-page: 5
  year: 2001
  ident: 10607_CR49
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 37
  start-page: 11121
  issue: 9
  year: 2023
  ident: 10607_CR54
  publication-title: Proc AAAI Conf Artif Intell
– ident: 10607_CR44
– volume: 23
  start-page: 5442
  issue: 1
  year: 2022
  ident: 10607_CR47
  publication-title: J Mach Learn Res
– volume: 8
  start-page: 483
  year: 2022
  ident: 10607_CR29
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2022.02.184
– volume: 2
  start-page: 114
  year: 2021
  ident: 10607_CR12
  publication-title: J Eng
– volume: 32
  start-page: 896
  issue: 3
  year: 2016
  ident: 10607_CR42
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2016.02.001
– ident: 10607_CR2
  doi: 10.1016/B978-0-12-819657-1.00001-3
– ident: 10607_CR10
  doi: 10.1109/CCWC.2019.8666481
SSID ssj0004685
Score 2.3821945
Snippet Electricity generated from renewable energy sources has been established as an efficient remedy for both energy shortages and the environmental pollution...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10647
SubjectTerms Alternative energy sources
Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Datasets
Electric power grids
Electricity
Energy resources
Forecasting
Image Processing and Computer Vision
Meteorological data
Power plants
Probability and Statistics in Computer Science
Production methods
Renewable energy sources
Renewable resources
Root-mean-square errors
S.I.: Timely Advances of Deep Learning with applications and Data Driven Modeling
Solar energy
Special Issue on Timely Advances of Deep Learning with applications and Data Driven Modeling
Time series
Weather forecasting
Wind power
Title Efficient deterministic renewable energy forecasting guided by multiple-location weather data
URI https://link.springer.com/article/10.1007/s00521-024-10607-2
https://www.proquest.com/docview/3214226097
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iHrxYn1itkoM3XdhHdpM9irR4kCK-6EWWTDKRglTpw-K_N0mzrYoKet5sCJNkvkky33yEHGMmMdcFiyyUCPfMmETC4nCEiY0lRBIDR69acsm7XdHrlVeBFDaqs93rJ0nvqedkN3eDaY--KbOuo4h5ZB3vioU74QQbrm_uP7AhvRCnPbe4nB6WBarM9318hqNFjPnlWdSjTafxv3FukPUQXdKz2XLYJEs42CKNWrmBho28TR7avnKEBRyqQz6ML9hMXYHLqWNTUfSkQGpjWlRy5JKj6eOkr1FTeKN1GmLkoNBNLZ3OQknqMk53yF2nfXt-EQWhhUilmaPn6CJWhU4x5yYDY7gEFUvADKQA5MASzIGVUjOTF0ZrxUsAzhQTmdOfhGyXLA-eB7hHaJErlaIxLAV78lQcDOpYQ6yNLIUsTJMktb0rFaqQOzGMp2peP9nbr7L2q7z9qrRJTub_vMxqcPzaulVPYxX246hyckw20IxL3iSn9bQtPv_c2_7fmh-QtdQJBPtrmhZZHg8neEhW1eu4Pxoe-XX6Dqxw4uI
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFL2ICrqxPrFaNQt3OjCPzGRmKdJSsRbRKt1IyFMKUqUPi39vkmZaFRV0PZkw3DzOzeSecwCOVcJUKjMcGCjJ7TVjFOQGhwMVmVwij0JOlHMtaZF2O-92i2tPChuW1e7llaTbqWdkN_sH0xx9Y2y2jiwkgdl4l7BBLKuYf3N7_4EN6Yw4zbnF1vTgxFNlvu_jMxzNc8wv16IObRqV_33nOqz57BKdTafDBiyo_iZUSucG5BfyFjzUnXKEARwkfT2ME2xGVuByYtlUSDlSIDI5rRJsaIuj0eO4J5VE_A2VZYiBhUI7tGgyTSWRrTjdhrtGvXPeDLzRQiDixNJzZBaKTMYqJTrhWhPGRci4SjjLuSIcRyrluGAS6zTTUgpScE6wwHli_Sd5sgOL_ee-2gWUpULESmscc3PyFIRrJUPJQ6lZkbNMVyEq402FVyG3ZhhPdKaf7OJHTfyoix-Nq3Aye-dlqsHxa-taOYzUr8chtXZMJtEMC1KF03LY5o9_7m3vb82PYKXZuWrR1kX7ch9WY2sW7H7Z1GBxNBirA1gWr6PecHDo5uw7V3Llxg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFA6iIl6sK1ar5uBNh86SmcwcRVsUSym40IuErFKQsXSx-O_NS2faKiqI58mE8LK895Lvex9CpzriOlYJ8awrSeGZMfBS64c9HdhYIg18QbVTLWnRdjvtdrPOAovfod3LJ8kppwGqNOWjel-Z-oz4BreZNg0OiT1GEp969hBeIQCkh3z97nGBGelEOW0OA_geEhW0me_7-Oya5vHmlydS53malf-PeRNtFFEnvpguky20pPNtVCkVHXCxwXfQU8NVlLCdYlXgZFwhZwyFLyfAssLakQWxjXW15EMATePncU9phcU7LuGJHrhImHI8mYaYGJCou-ih2bi_vPYKAQZPhhHQdlTiy0SFOqYmEsZQLqTPhY4ET4WmggQ6FiTjipg4MUpJmglBiSRpBLqUItpDy_lrrvcRTmIpQ20MCYXNSCUVRitfCV8ZnqU8MVUUlLZnsqhODiIZL2xWV9nZj1n7MWc_FlbR2eyf_rQ2x6-ta-WUsmKfDhnINNkA1M9oFZ2XUzj__HNvB39rfoLWOldN1rpp3x6i9RA0hN1NTg0tjwZjfYRW5duoNxwcu-X7ARz27qo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+deterministic+renewable+energy+forecasting+guided+by+multiple-location+weather+data&rft.jtitle=Neural+computing+%26+applications&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=37&rft.issue=17&rft.spage=10647&rft.epage=10674&rft_id=info:doi/10.1007%2Fs00521-024-10607-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon