Integrating machine learning with lateral flow immunoassay for ultrafast and sensitive tadalafil detection

Tadalafil, a phosphodiesterase type 5 inhibitor frequently detected in functional foods and dietary supplements, poses significant risks. To enable sensitive on-site detection, an anti-tadalafil monoclonal antibody (3C5) with an IC₅₀ of 0.32 ng mL−1 was prepared. Antibody-antigen binding kinetics re...

Full description

Saved in:
Bibliographic Details
Published in:Food chemistry Vol. 498; no. Pt 1; p. 147098
Main Authors: Chen, Jiawei, Chen, Zhenzhen, Yu, Sha, Xiao, Xiaoyue, Peng, Juan, Xia, Yudi, Lai, Weihua
Format: Journal Article
Language:English
Published: England Elsevier Ltd 01.01.2026
Subjects:
ISSN:0308-8146, 1873-7072, 1873-7072
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Tadalafil, a phosphodiesterase type 5 inhibitor frequently detected in functional foods and dietary supplements, poses significant risks. To enable sensitive on-site detection, an anti-tadalafil monoclonal antibody (3C5) with an IC₅₀ of 0.32 ng mL−1 was prepared. Antibody-antigen binding kinetics revealed distinct variations in the early detection stage, prompting the integration of lateral flow immunoassay with machine learning (LFIA@ML) to further speed up testing. A Random Forest model trained on multi-dimensional signal features achieved fast detection and high accuracy, with a coefficient of determination of 0.995 and a mean absolute error of 0.038. For 140 samples, the LFIA@ML demonstrated a 94.3 % prediction accuracy and significantly reduced detection time to 3 min. The assay exhibited a strong correlation with LC-MS/MS, with recoveries ranging from 92.3 % to 112 % (coefficient variations ≤15.37 %). The LFIA@ML showcased the ability to reduce detection time by using the Random Forest algorithm and was validated in wine samples. [Display omitted] •Sensitive monoclonal antibodies against tadalafil were developed.•A fluorescent lateral flow immunoassay detecting tadalafil was developed.•LFIA@ML achieves ultrafast detection (<3 min) versus conventional 10–20 min.•The results showed that the LFIA@ML correlated well with LC-MS.
AbstractList Tadalafil, a phosphodiesterase type 5 inhibitor frequently detected in functional foods and dietary supplements, poses significant risks. To enable sensitive on-site detection, an anti-tadalafil monoclonal antibody (3C5) with an IC₅₀ of 0.32 ng mL was prepared. Antibody-antigen binding kinetics revealed distinct variations in the early detection stage, prompting the integration of lateral flow immunoassay with machine learning (LFIA@ML) to further speed up testing. A Random Forest model trained on multi-dimensional signal features achieved fast detection and high accuracy, with a coefficient of determination of 0.995 and a mean absolute error of 0.038. For 140 samples, the LFIA@ML demonstrated a 94.3 % prediction accuracy and significantly reduced detection time to 3 min. The assay exhibited a strong correlation with LC-MS/MS, with recoveries ranging from 92.3 % to 112 % (coefficient variations ≤15.37 %). The LFIA@ML showcased the ability to reduce detection time by using the Random Forest algorithm and was validated in wine samples.
Tadalafil, a phosphodiesterase type 5 inhibitor frequently detected in functional foods and dietary supplements, poses significant risks. To enable sensitive on-site detection, an anti-tadalafil monoclonal antibody (3C5) with an IC₅₀ of 0.32 ng mL-1 was prepared. Antibody-antigen binding kinetics revealed distinct variations in the early detection stage, prompting the integration of lateral flow immunoassay with machine learning (LFIA@ML) to further speed up testing. A Random Forest model trained on multi-dimensional signal features achieved fast detection and high accuracy, with a coefficient of determination of 0.995 and a mean absolute error of 0.038. For 140 samples, the LFIA@ML demonstrated a 94.3 % prediction accuracy and significantly reduced detection time to 3 min. The assay exhibited a strong correlation with LC-MS/MS, with recoveries ranging from 92.3 % to 112 % (coefficient variations ≤15.37 %). The LFIA@ML showcased the ability to reduce detection time by using the Random Forest algorithm and was validated in wine samples.Tadalafil, a phosphodiesterase type 5 inhibitor frequently detected in functional foods and dietary supplements, poses significant risks. To enable sensitive on-site detection, an anti-tadalafil monoclonal antibody (3C5) with an IC₅₀ of 0.32 ng mL-1 was prepared. Antibody-antigen binding kinetics revealed distinct variations in the early detection stage, prompting the integration of lateral flow immunoassay with machine learning (LFIA@ML) to further speed up testing. A Random Forest model trained on multi-dimensional signal features achieved fast detection and high accuracy, with a coefficient of determination of 0.995 and a mean absolute error of 0.038. For 140 samples, the LFIA@ML demonstrated a 94.3 % prediction accuracy and significantly reduced detection time to 3 min. The assay exhibited a strong correlation with LC-MS/MS, with recoveries ranging from 92.3 % to 112 % (coefficient variations ≤15.37 %). The LFIA@ML showcased the ability to reduce detection time by using the Random Forest algorithm and was validated in wine samples.
Tadalafil, a phosphodiesterase type 5 inhibitor frequently detected in functional foods and dietary supplements, poses significant risks. To enable sensitive on-site detection, an anti-tadalafil monoclonal antibody (3C5) with an IC₅₀ of 0.32 ng mL−1 was prepared. Antibody-antigen binding kinetics revealed distinct variations in the early detection stage, prompting the integration of lateral flow immunoassay with machine learning (LFIA@ML) to further speed up testing. A Random Forest model trained on multi-dimensional signal features achieved fast detection and high accuracy, with a coefficient of determination of 0.995 and a mean absolute error of 0.038. For 140 samples, the LFIA@ML demonstrated a 94.3 % prediction accuracy and significantly reduced detection time to 3 min. The assay exhibited a strong correlation with LC-MS/MS, with recoveries ranging from 92.3 % to 112 % (coefficient variations ≤15.37 %). The LFIA@ML showcased the ability to reduce detection time by using the Random Forest algorithm and was validated in wine samples. [Display omitted] •Sensitive monoclonal antibodies against tadalafil were developed.•A fluorescent lateral flow immunoassay detecting tadalafil was developed.•LFIA@ML achieves ultrafast detection (<3 min) versus conventional 10–20 min.•The results showed that the LFIA@ML correlated well with LC-MS.
ArticleNumber 147098
Author Chen, Zhenzhen
Yu, Sha
Chen, Jiawei
Xia, Yudi
Lai, Weihua
Peng, Juan
Xiao, Xiaoyue
Author_xml – sequence: 1
  givenname: Jiawei
  surname: Chen
  fullname: Chen, Jiawei
  organization: State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang 330047, China
– sequence: 2
  givenname: Zhenzhen
  surname: Chen
  fullname: Chen, Zhenzhen
  organization: State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang 330047, China
– sequence: 3
  givenname: Sha
  surname: Yu
  fullname: Yu, Sha
  organization: State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang 330047, China
– sequence: 4
  givenname: Xiaoyue
  surname: Xiao
  fullname: Xiao, Xiaoyue
  organization: State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang 330047, China
– sequence: 5
  givenname: Juan
  surname: Peng
  fullname: Peng, Juan
  organization: State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang 330047, China
– sequence: 6
  givenname: Yudi
  surname: Xia
  fullname: Xia, Yudi
  email: yudi511@xmu.edu.cn
  organization: School of Journalism and Communication, Xiamen University, 422 Siming South Road, Xiamen 361102, China
– sequence: 7
  givenname: Weihua
  surname: Lai
  fullname: Lai, Weihua
  email: talktolaiwh@163.com
  organization: State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang 330047, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41270623$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtPHDEQhC0ECgvkLyAfc5nFr1l7b4lQHkhIXJKz1WP3sF55bLA9IP59ZrWQa04ttb4qqaouyGnKCQm55mzNGd_c7Ndjzt7tcFoLJvo1V5ptzQlZcaNlp5kWp2TFJDOd4WpzTi5q3TPGBOPmEzlXXGi2EXJF9nep4WOBFtIjncDtQkIaEUo6PF5D29EIDQtEOsb8SsM0zSlDrfBGx1zoHFuBEWqjkDytmGpo4QVpAw8RxhCpx4auhZyuyNkIseLn93tJ_vz4_vv2V3f_8PPu9tt954QUrTMavIMBB-W2g9dDLwaDuh96PxrVu63rpTfGKK-F0s6A3C75me4RpPRaorwkX46-TyU_z1ibnUJ1GCMkzHO1UmglmDJCLOj1OzoPE3r7VMIE5c1-9LMAmyPgSq614PgP4cwehrB7-zGEPQxhj0Mswq9HIS5JXwIWW13A5NCHstRhfQ7_s_gL78WWUg
Cites_doi 10.3168/jds.2018-16048
10.1016/j.foodchem.2023.135511
10.1002/smll.202207949
10.1002/adma.201703643
10.1016/j.cej.2024.153327
10.1016/j.tifs.2021.02.045
10.1038/s41467-024-46069-2
10.3390/foods11111609
10.1016/j.foodchem.2022.135175
10.1016/j.foodchem.2023.137328
10.1002/dta.1367
10.1016/j.foodchem.2021.129514
10.1080/19440049.2021.1881623
10.1016/j.foodchem.2020.128255
10.1016/j.trac.2019.115769
10.1016/j.bios.2024.117068
10.1016/j.fbio.2024.103905
10.1016/j.snb.2022.131450
10.1021/acs.analchem.4c06582
10.1016/j.foodchem.2024.139050
10.1080/09540105.2019.1585417
10.1021/acssensors.3c02250
10.1016/j.forsciint.2019.02.014
10.1021/acssensors.2c02165
10.1038/s41564-018-0295-3
10.1021/acs.chemrev.1c01012
10.7150/thno.67184
10.1021/acs.chemmater.2c03741
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright © 2025 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2025 Elsevier Ltd
– notice: Copyright © 2025 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.foodchem.2025.147098
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Chemistry
Diet & Clinical Nutrition
EISSN 1873-7072
ExternalDocumentID 41270623
10_1016_j_foodchem_2025_147098
S030881462504350X
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARLI
AATLK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ACDAQ
ACGFO
ACGFS
ACIUM
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADECG
ADEZE
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AFZHZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJSZI
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
KZ1
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSA
SSK
SSU
SSZ
T5K
WH7
~G-
~HD
~KM
29H
53G
9DU
AALCJ
AAQXK
AAYJJ
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AGHFR
AGQPQ
AGRDE
AI.
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLV
HVGLF
HZ~
LW9
M41
R2-
SCB
VH1
WUQ
Y6R
NPM
7X8
ID FETCH-LOGICAL-c232t-87adcabeb4c9bd7b52b8e75b5df845c9c53d8884d7247c8a39025075ea33d73e3
ISSN 0308-8146
1873-7072
IngestDate Sat Nov 22 19:12:25 EST 2025
Sun Nov 23 01:40:34 EST 2025
Thu Nov 27 00:48:37 EST 2025
Sat Nov 29 17:06:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue Pt 1
Keywords Random forest algorithm
Tadalafil detection
Lateral flow immunoassay
Machine learning
Language English
License Copyright © 2025 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c232t-87adcabeb4c9bd7b52b8e75b5df845c9c53d8884d7247c8a39025075ea33d73e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 41270623
PQID 3274204822
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3274204822
pubmed_primary_41270623
crossref_primary_10_1016_j_foodchem_2025_147098
elsevier_sciencedirect_doi_10_1016_j_foodchem_2025_147098
PublicationCentury 2000
PublicationDate 2026-01-01
PublicationDateYYYYMMDD 2026-01-01
PublicationDate_xml – month: 01
  year: 2026
  text: 2026-01-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Food chemistry
PublicationTitleAlternate Food Chem
PublicationYear 2026
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hnasko, Jackson, Lin, Haff, McGarvey (bb0040) 2021; 355
Monakhova, Kuballa, Löbell-Behrends, Maixner, Kohl-Himmelseher, Ruge, Lachenmeier (bb0090) 2013; 5
Ye, Yan, Zhang, Duan, Chen, Song, Gao (bb0140) 2022; 11
Niu, Zhang, Shi, Park, Xie, Kwok, Tang (bb0095) 2020; 123
Xiao, Hu, Lai, Peng, Lai (bb0130) 2021; 111
Liu, Chen, Li, Tan, Wang, Zhang, Tang (bb0075) 2025; 271
Lee, Park, Park, Kim, Park, Kang (bb0055) 2019; 298
Dong, Zhang, Liu, Zhu, Peng, Hu, Zhang, Chen (bb0020) 2024; 449
Zhang, Li, Mao, Dang, Huang, Wang, Yang, Bai, Zhang (bb0150) 2023; 407
Land, Boeras, Chen, Ramsay, Peeling (bb0050) 2019; 4
Atta, Zhao, Yampolsky, Sanchez, Vo-Dinh (bb0005) 2024; 496
Sun, Wu, Fang, Wang, Xu, Yan, Wang (bb0110) 2025; 97
Guan, Shen, Jiang, Zhao, Liang, Liu, Shen, Li, Xu, Lei (bb0030) 2022; 358
Sena-Torralba, Álvarez-Diduk, Parolo, Piper, Merkoçi (bb0105) 2022; 122
Lee, Park, Woo, Yoo, Lee, Chung, Lee (bb0065) 2024; 15
Renzi, Piper, Nastri, Merkoçi, Lombardi (bb0100) 2023; 19
Yang, Ho, Gao, Chen, Chen, Zhu, Zhang (bb0135) 2025
Suryoprabowo, Liu, Kuang, Cui, Xu (bb0120) 2021; 342
Zhang, Zhang, Lai, Su, He, Lai, Deng (bb0145) 2023; 35
Wei, Zhang, Huang, Yang, Tian, Shen (bb0125) 2024; 59
Lee, Min, Young, Park, Han, Yang, Baek (bb0060) 2021; 38
Li, Qin, Xu, Qian, Tang (bb0070) 2017; 29
Chen, Ding, Huang, Xiong (bb0015) 2022; 12
Hu, Fang, Huang, Chen, Liu, Xing, Peng, Lai (bb0045) 2019; 102
Supianto, Yoo, Hwang, Oh, Jhung, Lee (bb0115) 2024; 9
Chen, Zhang, Xiao, Liu, Peng, Xiong, Lai (bb0010) 2024; 282
Dou, Li, Wang, Shen, Yu (bb0025) 2022; 7
Lu, Ding, Liu, Xu, Kuang, Xu, Guo (bb0085) 2024; 433
He, Zou, Yang, Wang, Deng, Tian, Shen (bb0035) 2019; 30
Liu, Lai, Guo, Zhang, Zhang, Wu, Lai (bb0080) 2023; 411
Land (10.1016/j.foodchem.2025.147098_bb0050) 2019; 4
Hnasko (10.1016/j.foodchem.2025.147098_bb0040) 2021; 355
Liu (10.1016/j.foodchem.2025.147098_bb0075) 2025; 271
Suryoprabowo (10.1016/j.foodchem.2025.147098_bb0120) 2021; 342
Guan (10.1016/j.foodchem.2025.147098_bb0030) 2022; 358
He (10.1016/j.foodchem.2025.147098_bb0035) 2019; 30
Lee (10.1016/j.foodchem.2025.147098_bb0065) 2024; 15
Xiao (10.1016/j.foodchem.2025.147098_bb0130) 2021; 111
Chen (10.1016/j.foodchem.2025.147098_bb0010) 2024; 282
Lee (10.1016/j.foodchem.2025.147098_bb0060) 2021; 38
Zhang (10.1016/j.foodchem.2025.147098_bb0150) 2023; 407
Li (10.1016/j.foodchem.2025.147098_bb0070) 2017; 29
Wei (10.1016/j.foodchem.2025.147098_bb0125) 2024; 59
Lu (10.1016/j.foodchem.2025.147098_bb0085) 2024; 433
Chen (10.1016/j.foodchem.2025.147098_bb0015) 2022; 12
Atta (10.1016/j.foodchem.2025.147098_bb0005) 2024; 496
Niu (10.1016/j.foodchem.2025.147098_bb0095) 2020; 123
Renzi (10.1016/j.foodchem.2025.147098_bb0100) 2023; 19
Sun (10.1016/j.foodchem.2025.147098_bb0110) 2025; 97
Yang (10.1016/j.foodchem.2025.147098_bb0135) 2025
Dou (10.1016/j.foodchem.2025.147098_bb0025) 2022; 7
Sena-Torralba (10.1016/j.foodchem.2025.147098_bb0105) 2022; 122
Lee (10.1016/j.foodchem.2025.147098_bb0055) 2019; 298
Supianto (10.1016/j.foodchem.2025.147098_bb0115) 2024; 9
Liu (10.1016/j.foodchem.2025.147098_bb0080) 2023; 411
Ye (10.1016/j.foodchem.2025.147098_bb0140) 2022; 11
Hu (10.1016/j.foodchem.2025.147098_bb0045) 2019; 102
Dong (10.1016/j.foodchem.2025.147098_bb0020) 2024; 449
Zhang (10.1016/j.foodchem.2025.147098_bb0145) 2023; 35
Monakhova (10.1016/j.foodchem.2025.147098_bb0090) 2013; 5
References_xml – volume: 4
  start-page: 46
  year: 2019
  end-page: 54
  ident: bb0050
  article-title: REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes
  publication-title: Nature Microbiology
– volume: 433
  year: 2024
  ident: bb0085
  article-title: Immunochromatographic assay for rapid detection of flupyradifurone in grape, blueberry, and tomato samples
  publication-title: Food Chemistry
– volume: 7
  start-page: 3243
  year: 2022
  end-page: 3257
  ident: bb0025
  article-title: AIEgens: Next generation signaling source for immunoassays?
  publication-title: ACS Sensors
– volume: 19
  year: 2023
  ident: bb0100
  article-title: An artificial miniaturized peroxidase for signal amplification in lateral flow immunoassays
  publication-title: Small
– volume: 97
  start-page: 4824
  year: 2025
  end-page: 4831
  ident: bb0110
  article-title: Dual-mode colorimetric/SERS lateral flow immunoassay with machine learning-driven optimization for ultrasensitive mycotoxin detection
  publication-title: Analytical Chemistry
– volume: 11
  start-page: 11
  year: 2022
  ident: bb0140
  article-title: Detection of pesticide residue level in grape using hyperspectral imaging with machine learning
  publication-title: Foods
– volume: 411
  year: 2023
  ident: bb0080
  article-title: Sensitive lateral flow immunoassay strips based on Fe3+−chelated polydopamine nanospheres for the detection of kanamycin
  publication-title: Food Chemistry
– volume: 298
  start-page: 10
  year: 2019
  end-page: 19
  ident: bb0055
  article-title: Screening of illegal sexual enhancement supplements and counterfeit drugs sold in the online and offline markets between 2014 and 2017
  publication-title: Forensic Science International
– volume: 15
  start-page: 1695
  year: 2024
  ident: bb0065
  article-title: Rapid deep learning-assisted predictive diagnostics for point-of-care testing
  publication-title: Nature Communications
– volume: 35
  start-page: 3494
  year: 2023
  end-page: 3502
  ident: bb0145
  article-title: Highly sensitive and Ultrastable lateral flow immunoassay based on polydopamine-coated aggregation-induced emission fluorescent microspheres with excellent fluorescence performance and biofriendly coupling strategy
  publication-title: Chemistry of Materials
– volume: 30
  start-page: 349
  year: 2019
  end-page: 368
  ident: bb0035
  article-title: Development of a skeleton-specific antibody and au nanoparticle-based immunochromatographic sensor for simultaneous detection of various tadalafil adulterants in health food
  publication-title: Food and Agricultural Immunology
– volume: 111
  start-page: 68
  year: 2021
  end-page: 88
  ident: bb0130
  article-title: Developmental trend of immunoassays for monitoring hazards in food samples: A review
  publication-title: Trends in Food Science & Technology
– volume: 355
  year: 2021
  ident: bb0040
  article-title: A rapid and sensitive lateral flow immunoassay (LFIA) for the detection of gluten in foods
  publication-title: Food Chemistry
– volume: 59
  year: 2024
  ident: bb0125
  article-title: Rapid detection of multiple sildenafil and tadalafil adulterants in dietary supplements by dual-labeled probe time-resolved fluorescence immunochromatography assay
  publication-title: Food Bioscience
– volume: 38
  start-page: 769
  year: 2021
  end-page: 781
  ident: bb0060
  article-title: Detection of 94 compounds related to sexual enhancement including sildenafil, tadalafil, vardenafil and their analogues in various formulations of dietary supplements and food samples using HPLC and LC-MS/MS
  publication-title: Food Additives & Contaminants: Part A
– volume: 358
  year: 2022
  ident: bb0030
  article-title: An ultrasensitive microfluidic chip-based immunoassay for multiplex determination of 11 PDE-5 inhibitors in adulterated health foods
  publication-title: Sensors and Actuators B: Chemical
– volume: 12
  start-page: 574
  year: 2022
  end-page: 602
  ident: bb0015
  article-title: Tailoring noble metal nanoparticle designs to enable sensitive lateral flow immunoassay
  publication-title: Theranostics
– volume: 9
  start-page: 1321
  year: 2024
  end-page: 1330
  ident: bb0115
  article-title: Linker-preserved iron metal–organic framework-based lateral flow AsSAY for SENSITIVE transglutaminase 2 Detection in urine through machine learning-assisted colorimetric analysis
  publication-title: ACS Sensors
– volume: 5
  start-page: 400
  year: 2013
  end-page: 411
  ident: bb0090
  article-title: Standardless 1H NMR determination of pharmacologically active substances in dietary supplements and medicines that have been illegally traded over the internet
  publication-title: Drug Testing and Analysis
– volume: 29
  year: 2017
  ident: bb0070
  article-title: AIE nanoparticles with high stimulated emission depletion efficiency and photobleaching resistance for long-term super-resolution bioimaging
  publication-title: Advanced Materials
– volume: 102
  start-page: 6037
  year: 2019
  end-page: 6046
  ident: bb0045
  article-title: Using molecular descriptors for assisted screening of heterologous competitive antigens to improve the sensitivity of ELISA for detection of enrofloxacin in raw milk
  publication-title: Journal of Dairy Science
– volume: 122
  start-page: 14881
  year: 2022
  end-page: 14910
  ident: bb0105
  article-title: Toward next generation lateral flow assays: Integration of nanomaterials
  publication-title: Chemical Reviews
– volume: 496
  year: 2024
  ident: bb0005
  article-title: Nanoengineered plasmonics-enhanced photothermal tags for sensitive detection of cardiac biomarker troponin I using lateral flow immunoassay
  publication-title: Chemical Engineering Journal
– year: 2025
  ident: bb0135
  article-title: Machine learning: An effective tool for monitoring and ensuring food safety, quality, and nutrition
  publication-title: Food Chemistry
– volume: 342
  year: 2021
  ident: bb0120
  article-title: Fluorescence based immunochromatographic sensor for rapid and sensitive detection of tadalafil and comparison with a gold lateral flow immunoassay
  publication-title: Food Chemistry
– volume: 407
  year: 2023
  ident: bb0150
  article-title: Production of high-affinity monoclonal antibody and development of immunoassay for 3-methyl-quinoxaline-2-carboxylic acid detection in swine muscle and liver
  publication-title: Food Chemistry
– volume: 449
  year: 2024
  ident: bb0020
  article-title: A metal-organic framework signaling probe-mediated immunosensor for the economical and rapid determination of enrofloxacin in milk
  publication-title: Food Chemistry
– volume: 282
  year: 2024
  ident: bb0010
  article-title: Bifunctional bovine serum albumin modification driven sensitivity-enhanced lateral flow immunoassay for small molecule hazards monitoring in food
  publication-title: International Journal of Biological Macromolecules
– volume: 271
  year: 2025
  ident: bb0075
  article-title: AIE nanoparticle with enhanced fluorescence for ultrasensitive lateral flow immunoassays and point-of-care diagnosis of interstitial lung disease
  publication-title: Biosensors and Bioelectronics
– volume: 123
  year: 2020
  ident: bb0095
  article-title: AIE luminogens as fluorescent bioprobes
  publication-title: TrAC Trends in Analytical Chemistry
– volume: 102
  start-page: 6037
  issue: 7
  year: 2019
  ident: 10.1016/j.foodchem.2025.147098_bb0045
  article-title: Using molecular descriptors for assisted screening of heterologous competitive antigens to improve the sensitivity of ELISA for detection of enrofloxacin in raw milk
  publication-title: Journal of Dairy Science
  doi: 10.3168/jds.2018-16048
– volume: 411
  year: 2023
  ident: 10.1016/j.foodchem.2025.147098_bb0080
  article-title: Sensitive lateral flow immunoassay strips based on Fe3+−chelated polydopamine nanospheres for the detection of kanamycin
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2023.135511
– volume: 19
  issue: 51
  year: 2023
  ident: 10.1016/j.foodchem.2025.147098_bb0100
  article-title: An artificial miniaturized peroxidase for signal amplification in lateral flow immunoassays
  publication-title: Small
  doi: 10.1002/smll.202207949
– volume: 29
  issue: 43
  year: 2017
  ident: 10.1016/j.foodchem.2025.147098_bb0070
  article-title: AIE nanoparticles with high stimulated emission depletion efficiency and photobleaching resistance for long-term super-resolution bioimaging
  publication-title: Advanced Materials
  doi: 10.1002/adma.201703643
– volume: 496
  year: 2024
  ident: 10.1016/j.foodchem.2025.147098_bb0005
  article-title: Nanoengineered plasmonics-enhanced photothermal tags for sensitive detection of cardiac biomarker troponin I using lateral flow immunoassay
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2024.153327
– volume: 111
  start-page: 68
  year: 2021
  ident: 10.1016/j.foodchem.2025.147098_bb0130
  article-title: Developmental trend of immunoassays for monitoring hazards in food samples: A review
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2021.02.045
– volume: 15
  start-page: 1695
  issue: 1
  year: 2024
  ident: 10.1016/j.foodchem.2025.147098_bb0065
  article-title: Rapid deep learning-assisted predictive diagnostics for point-of-care testing
  publication-title: Nature Communications
  doi: 10.1038/s41467-024-46069-2
– volume: 11
  start-page: 11
  issue: 11
  year: 2022
  ident: 10.1016/j.foodchem.2025.147098_bb0140
  article-title: Detection of pesticide residue level in grape using hyperspectral imaging with machine learning
  publication-title: Foods
  doi: 10.3390/foods11111609
– volume: 407
  year: 2023
  ident: 10.1016/j.foodchem.2025.147098_bb0150
  article-title: Production of high-affinity monoclonal antibody and development of immunoassay for 3-methyl-quinoxaline-2-carboxylic acid detection in swine muscle and liver
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2022.135175
– volume: 433
  year: 2024
  ident: 10.1016/j.foodchem.2025.147098_bb0085
  article-title: Immunochromatographic assay for rapid detection of flupyradifurone in grape, blueberry, and tomato samples
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2023.137328
– volume: 5
  start-page: 400
  issue: 6
  year: 2013
  ident: 10.1016/j.foodchem.2025.147098_bb0090
  article-title: Standardless 1H NMR determination of pharmacologically active substances in dietary supplements and medicines that have been illegally traded over the internet
  publication-title: Drug Testing and Analysis
  doi: 10.1002/dta.1367
– volume: 355
  year: 2021
  ident: 10.1016/j.foodchem.2025.147098_bb0040
  article-title: A rapid and sensitive lateral flow immunoassay (LFIA) for the detection of gluten in foods
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2021.129514
– volume: 38
  start-page: 769
  issue: 5
  year: 2021
  ident: 10.1016/j.foodchem.2025.147098_bb0060
  article-title: Detection of 94 compounds related to sexual enhancement including sildenafil, tadalafil, vardenafil and their analogues in various formulations of dietary supplements and food samples using HPLC and LC-MS/MS
  publication-title: Food Additives & Contaminants: Part A
  doi: 10.1080/19440049.2021.1881623
– volume: 342
  year: 2021
  ident: 10.1016/j.foodchem.2025.147098_bb0120
  article-title: Fluorescence based immunochromatographic sensor for rapid and sensitive detection of tadalafil and comparison with a gold lateral flow immunoassay
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2020.128255
– volume: 123
  year: 2020
  ident: 10.1016/j.foodchem.2025.147098_bb0095
  article-title: AIE luminogens as fluorescent bioprobes
  publication-title: TrAC Trends in Analytical Chemistry
  doi: 10.1016/j.trac.2019.115769
– volume: 271
  year: 2025
  ident: 10.1016/j.foodchem.2025.147098_bb0075
  article-title: AIE nanoparticle with enhanced fluorescence for ultrasensitive lateral flow immunoassays and point-of-care diagnosis of interstitial lung disease
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2024.117068
– volume: 59
  year: 2024
  ident: 10.1016/j.foodchem.2025.147098_bb0125
  article-title: Rapid detection of multiple sildenafil and tadalafil adulterants in dietary supplements by dual-labeled probe time-resolved fluorescence immunochromatography assay
  publication-title: Food Bioscience
  doi: 10.1016/j.fbio.2024.103905
– volume: 358
  year: 2022
  ident: 10.1016/j.foodchem.2025.147098_bb0030
  article-title: An ultrasensitive microfluidic chip-based immunoassay for multiplex determination of 11 PDE-5 inhibitors in adulterated health foods
  publication-title: Sensors and Actuators B: Chemical
  doi: 10.1016/j.snb.2022.131450
– volume: 97
  start-page: 4824
  issue: 9
  year: 2025
  ident: 10.1016/j.foodchem.2025.147098_bb0110
  article-title: Dual-mode colorimetric/SERS lateral flow immunoassay with machine learning-driven optimization for ultrasensitive mycotoxin detection
  publication-title: Analytical Chemistry
  doi: 10.1021/acs.analchem.4c06582
– volume: 449
  year: 2024
  ident: 10.1016/j.foodchem.2025.147098_bb0020
  article-title: A metal-organic framework signaling probe-mediated immunosensor for the economical and rapid determination of enrofloxacin in milk
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2024.139050
– volume: 30
  start-page: 349
  issue: 1
  year: 2019
  ident: 10.1016/j.foodchem.2025.147098_bb0035
  article-title: Development of a skeleton-specific antibody and au nanoparticle-based immunochromatographic sensor for simultaneous detection of various tadalafil adulterants in health food
  publication-title: Food and Agricultural Immunology
  doi: 10.1080/09540105.2019.1585417
– volume: 9
  start-page: 1321
  issue: 3
  year: 2024
  ident: 10.1016/j.foodchem.2025.147098_bb0115
  article-title: Linker-preserved iron metal–organic framework-based lateral flow AsSAY for SENSITIVE transglutaminase 2 Detection in urine through machine learning-assisted colorimetric analysis
  publication-title: ACS Sensors
  doi: 10.1021/acssensors.3c02250
– volume: 282
  year: 2024
  ident: 10.1016/j.foodchem.2025.147098_bb0010
  article-title: Bifunctional bovine serum albumin modification driven sensitivity-enhanced lateral flow immunoassay for small molecule hazards monitoring in food
  publication-title: International Journal of Biological Macromolecules
– volume: 298
  start-page: 10
  year: 2019
  ident: 10.1016/j.foodchem.2025.147098_bb0055
  article-title: Screening of illegal sexual enhancement supplements and counterfeit drugs sold in the online and offline markets between 2014 and 2017
  publication-title: Forensic Science International
  doi: 10.1016/j.forsciint.2019.02.014
– volume: 7
  start-page: 3243
  issue: 11
  year: 2022
  ident: 10.1016/j.foodchem.2025.147098_bb0025
  article-title: AIEgens: Next generation signaling source for immunoassays?
  publication-title: ACS Sensors
  doi: 10.1021/acssensors.2c02165
– volume: 4
  start-page: 46
  issue: 1
  year: 2019
  ident: 10.1016/j.foodchem.2025.147098_bb0050
  article-title: REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes
  publication-title: Nature Microbiology
  doi: 10.1038/s41564-018-0295-3
– volume: 122
  start-page: 14881
  issue: 18
  year: 2022
  ident: 10.1016/j.foodchem.2025.147098_bb0105
  article-title: Toward next generation lateral flow assays: Integration of nanomaterials
  publication-title: Chemical Reviews
  doi: 10.1021/acs.chemrev.1c01012
– year: 2025
  ident: 10.1016/j.foodchem.2025.147098_bb0135
  article-title: Machine learning: An effective tool for monitoring and ensuring food safety, quality, and nutrition
  publication-title: Food Chemistry
– volume: 12
  start-page: 574
  issue: 2
  year: 2022
  ident: 10.1016/j.foodchem.2025.147098_bb0015
  article-title: Tailoring noble metal nanoparticle designs to enable sensitive lateral flow immunoassay
  publication-title: Theranostics
  doi: 10.7150/thno.67184
– volume: 35
  start-page: 3494
  issue: 9
  year: 2023
  ident: 10.1016/j.foodchem.2025.147098_bb0145
  article-title: Highly sensitive and Ultrastable lateral flow immunoassay based on polydopamine-coated aggregation-induced emission fluorescent microspheres with excellent fluorescence performance and biofriendly coupling strategy
  publication-title: Chemistry of Materials
  doi: 10.1021/acs.chemmater.2c03741
SSID ssj0002018
Score 2.493661
Snippet Tadalafil, a phosphodiesterase type 5 inhibitor frequently detected in functional foods and dietary supplements, poses significant risks. To enable sensitive...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 147098
SubjectTerms Lateral flow immunoassay
Machine learning
Random forest algorithm
Tadalafil detection
Title Integrating machine learning with lateral flow immunoassay for ultrafast and sensitive tadalafil detection
URI https://dx.doi.org/10.1016/j.foodchem.2025.147098
https://www.ncbi.nlm.nih.gov/pubmed/41270623
https://www.proquest.com/docview/3274204822
Volume 498
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7072
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002018
  issn: 0308-8146
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZ2QYIXBANGuUxGQnupMtokrp3HabRiaCp76KTAi-XYjpYqpKVNd-HXc5zYaUCdGA-8JJFVt0m_L8fnHJ8LQu9NDhodDJiXKEW8UCfSi4BInvTpgMh-qtKeqJpN0PGYxXF0vrV163JhrnJaFOzmJpr_V6hhDMA2qbP_AHfzpTAA1wA6HAF2ON4L-FNbAML4AL5XoZLa9YawbtdcmLTjvJvms-tuZhJEZqBCizp0c5WXC5GKZR15vjTx7VV0USmUyEWa5V2lyyp-q2grtiNTHVm67nHroAGb-5GJa539OfoNzj8v17loX1eVL_ayWSniTFSeXHO-Xem2h8Jveyhqocpo4NFe3aLnSG8Ys5I4jFiLcudlt79RyNf-hulRCk9mHgysfJ-AyKc9O_-3qtrjL3x0cXbGJ8N4cjj_4ZmGY2Zj3nZf2Ua7PiURCMTd49Nh_LlZxkEzqvIo3Y220ss3__Rdms1dlkulwUyeoMfW9MDHNWWeoi1d7KGHJw6zPdT5mOkSH2JbKzbHY9eqAT7nMtiXz9C0RTFsKYYdxbChGLYUw4ZiuEUxDBTDDcUwUAw3FMMNxXBDsefoYjScnHzybM8OeLsDv4TFVSgpEp2EMkoUTYifME1JQlTKQiIjSQLFGAsV9UMqmQjMNjeorVoEgaKBDl6gnWJW6JcIDyJJwVyRSU_1w1SFQmvqk0QEvRAuItJBH9z_zed1aRbuYhan3CHEDUK8RqiDIgcLtwpmrThyoNZf575zOHKAxWyriULPVksemGgHWAh9v4P2a4Cb-wlNYAdYGK_uMfs1erR-e96gnXKx0m_RA3lVZsvFAdqmMTuwJP0FUZW21Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+machine+learning+with+lateral+flow+immunoassay+for+ultrafast+and+sensitive+tadalafil+detection&rft.jtitle=Food+chemistry&rft.au=Chen%2C+Jiawei&rft.au=Chen%2C+Zhenzhen&rft.au=Yu%2C+Sha&rft.au=Xiao%2C+Xiaoyue&rft.date=2026-01-01&rft.issn=1873-7072&rft.eissn=1873-7072&rft.volume=498&rft.issue=Pt+1&rft_id=info:doi/10.1016%2Fj.foodchem.2025.147098&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-8146&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-8146&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-8146&client=summon