Information-Modeling Forecasting System for Thermal Mode of Top Converter Lance

—On the basis of mathematical modeling and object-oriented programming, a computer information-modeling forecasting system (IMFS) for thermal mode of top lance barrel (TLB) of oxygen converter was developed in order to fulfill the urgent and economically feasible task of determining the compliance o...

Full description

Saved in:
Bibliographic Details
Published in:Steel in translation Vol. 52; no. 5; pp. 495 - 502
Main Authors: Zhul’kovskii, O. A., Panteikov, S. P., Zhul’kovskaya, I. I.
Format: Journal Article
Language:English
Published: Moscow Pleiades Publishing 01.05.2022
Springer Nature B.V
Subjects:
ISSN:0967-0912, 1935-0988
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract —On the basis of mathematical modeling and object-oriented programming, a computer information-modeling forecasting system (IMFS) for thermal mode of top lance barrel (TLB) of oxygen converter was developed in order to fulfill the urgent and economically feasible task of determining the compliance of input technological parameters with certain safety criteria for conducting converter melting. The program was created in the form of a Windows-oriented application by refining the previously developed mathematical model of the temperature mode of the top converter lance barrel using the object-oriented programming language C# in Microsoft Visual Studio 2019 IDE. The mathematical model provides the solution of differential heat conduction equation in cylindrical coordinates (two-dimensional formulation) with assignment of the initial (temperature distribution in the computational domain) and boundary conditions of the II and III kind (respectively, on the outer and inner surfaces of the TLB). The finite difference approximation of the heat conduction equation and boundary conditions was obtained by the integro-interpolation method (balance method). A numerical sweep method (modified Gauss method) and an unconditionally stable implicit scheme were used to calculate the temperature field. Thermophysical values were obtained by approximating the corresponding tabular values. The application does not put forward special requirements for the computer infrastructure, operates locally (without the need for access to Internet), does not require special skills to work with it, having an intuitive user interface: the working area of the program consists of three windows (sections), in which the results of calculating the thermal mode of the TLB are displayed. The developed IMFS allows evaluating the design and technological parameters of the top blowing device as a criterion for its safe operation. Its application in the “advisor” mode ensures the optimal design of the top oxygen lances with a rational water-cooling system in order to ensure the proper thermal mode of the TLB throughout the entire operation period, as well as trouble-free operation of the blowing device, which is especially important for the conditions of converter shops in Ukraine equipped with outdated designs of top lances with low service life.
AbstractList Abstract—On the basis of mathematical modeling and object-oriented programming, a computer information-modeling forecasting system (IMFS) for thermal mode of top lance barrel (TLB) of oxygen converter was developed in order to fulfill the urgent and economically feasible task of determining the compliance of input technological parameters with certain safety criteria for conducting converter melting. The program was created in the form of a Windows-oriented application by refining the previously developed mathematical model of the temperature mode of the top converter lance barrel using the object-oriented programming language C# in Microsoft Visual Studio 2019 IDE. The mathematical model provides the solution of differential heat conduction equation in cylindrical coordinates (two-dimensional formulation) with assignment of the initial (temperature distribution in the computational domain) and boundary conditions of the II and III kind (respectively, on the outer and inner surfaces of the TLB). The finite difference approximation of the heat conduction equation and boundary conditions was obtained by the integro-interpolation method (balance method). A numerical sweep method (modified Gauss method) and an unconditionally stable implicit scheme were used to calculate the temperature field. Thermophysical values were obtained by approximating the corresponding tabular values. The application does not put forward special requirements for the computer infrastructure, operates locally (without the need for access to Internet), does not require special skills to work with it, having an intuitive user interface: the working area of the program consists of three windows (sections), in which the results of calculating the thermal mode of the TLB are displayed. The developed IMFS allows evaluating the design and technological parameters of the top blowing device as a criterion for its safe operation. Its application in the “advisor” mode ensures the optimal design of the top oxygen lances with a rational water-cooling system in order to ensure the proper thermal mode of the TLB throughout the entire operation period, as well as trouble-free operation of the blowing device, which is especially important for the conditions of converter shops in Ukraine equipped with outdated designs of top lances with low service life.
—On the basis of mathematical modeling and object-oriented programming, a computer information-modeling forecasting system (IMFS) for thermal mode of top lance barrel (TLB) of oxygen converter was developed in order to fulfill the urgent and economically feasible task of determining the compliance of input technological parameters with certain safety criteria for conducting converter melting. The program was created in the form of a Windows-oriented application by refining the previously developed mathematical model of the temperature mode of the top converter lance barrel using the object-oriented programming language C# in Microsoft Visual Studio 2019 IDE. The mathematical model provides the solution of differential heat conduction equation in cylindrical coordinates (two-dimensional formulation) with assignment of the initial (temperature distribution in the computational domain) and boundary conditions of the II and III kind (respectively, on the outer and inner surfaces of the TLB). The finite difference approximation of the heat conduction equation and boundary conditions was obtained by the integro-interpolation method (balance method). A numerical sweep method (modified Gauss method) and an unconditionally stable implicit scheme were used to calculate the temperature field. Thermophysical values were obtained by approximating the corresponding tabular values. The application does not put forward special requirements for the computer infrastructure, operates locally (without the need for access to Internet), does not require special skills to work with it, having an intuitive user interface: the working area of the program consists of three windows (sections), in which the results of calculating the thermal mode of the TLB are displayed. The developed IMFS allows evaluating the design and technological parameters of the top blowing device as a criterion for its safe operation. Its application in the “advisor” mode ensures the optimal design of the top oxygen lances with a rational water-cooling system in order to ensure the proper thermal mode of the TLB throughout the entire operation period, as well as trouble-free operation of the blowing device, which is especially important for the conditions of converter shops in Ukraine equipped with outdated designs of top lances with low service life.
Author Zhul’kovskii, O. A.
Zhul’kovskaya, I. I.
Panteikov, S. P.
Author_xml – sequence: 1
  givenname: O. A.
  orcidid: 0000-0003-0910-1150
  surname: Zhul’kovskii
  fullname: Zhul’kovskii, O. A.
  email: olalzh@ukr.net
  organization: Dnepropetrovsk State Technical University
– sequence: 2
  givenname: S. P.
  orcidid: 0000-0002-0385-7603
  surname: Panteikov
  fullname: Panteikov, S. P.
  email: ser_pant_in@ukr.net
  organization: Dnepropetrovsk State Technical University
– sequence: 3
  givenname: I. I.
  orcidid: 0000-0002-6462-4299
  surname: Zhul’kovskaya
  fullname: Zhul’kovskaya, I. I.
  email: inivzh@gmail.com
  organization: Dnepropetrovsk State Technical University
BookMark eNp9kNFKwzAUhoNMcJs-gHcBr6snyboklzKcDia7WL0ubXo6O7pkJp2wtzd1gqDoVQLn-_Kf_CMysM4iIdcMbgUDcbcGPZWgGeccUmBCnZEh0yJNQCs1IMN-nPTzCzIKYQuQTnnKhmS1sLXzu6JrnE2eXYVtYzd07jyaInT9fX0MHe5opGj2ihFtac9RV9PM7enM2Xf0HXq6LKzBS3JeF23Aq69zTF7mD9nsKVmuHhez-2ViuGAqEZLVvK5QCEBeVmUly3IiQFdQaSmkAW6MQY68KiTUQqsJaC7UNAVUSgkuxuTm9O7eu7cDhi7fuoO3MTLnkun4v5gTKXaijHcheKzzvW92hT_mDPK-t_xXb9GRPxzTdJ_9dL5o2n9NfjJDTLEb9N87_S19AMifgJ4
CitedBy_id crossref_primary_10_2355_isijinternational_ISIJINT_2025_069
Cites_doi 10.17073/0368-0797-2017-9-698-705
10.1007/BF02657884
10.3390/en12173235
10.1016/j.apm.2004.09.011
10.3103/S0967091220110108
10.1109/IEA.2019.8715073
10.1007/s11663-014-0245-2
10.4236/wjet.2020.83025
10.1155/2019/7408725
10.4236/mnsms.2013.33012
10.1002/srin.201300272
10.3390/pr8040483
10.1179/1743281212Y.0000000060
10.5151/2594-5335-22654
10.1016/j.ces.2021.116653
10.1002/srin.202100433
10.1016/j.proeps.2011.09.003
10.2355/isijinternational.ISIJINT-2017-680
ContentType Journal Article
Copyright Allerton Press, Inc. 2022. ISSN 0967-0912, Steel in Translation, 2022, Vol. 52, No. 5, pp. 495–502. © Allerton Press, Inc., 2022. Russian Text © The Author(s), 2022, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Chernaya Metallurgiya, 2022, No. 5, pp. 354–364.
Copyright_xml – notice: Allerton Press, Inc. 2022. ISSN 0967-0912, Steel in Translation, 2022, Vol. 52, No. 5, pp. 495–502. © Allerton Press, Inc., 2022. Russian Text © The Author(s), 2022, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Chernaya Metallurgiya, 2022, No. 5, pp. 354–364.
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.3103/S0967091222050138
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1935-0988
EndPage 502
ExternalDocumentID 10_3103_S0967091222050138
GroupedDBID -58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
1N0
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
408
40D
40E
5VS
6NX
8FE
8FG
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CS3
D1I
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
I~X
I~Z
J-C
JBSCW
JZLTJ
KB.
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9N
PDBOC
PF0
PT4
Q2X
QOR
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCM
SDH
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
XU3
YLTOR
Z7R
Z7S
Z7Y
Z7Z
Z85
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PHGZT
PQGLB
8BQ
8FD
JG9
ID FETCH-LOGICAL-c2318-371f2fde330e2bdbd7bb4309d0d9737c02ccce2e2da70f398409238650e888323
IEDL.DBID RSV
ISSN 0967-0912
IngestDate Thu Sep 25 01:05:03 EDT 2025
Tue Nov 18 21:01:41 EST 2025
Sat Nov 29 05:29:07 EST 2025
Fri Feb 21 02:44:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords forecasting system
oxygen converter
mathematical model
top lance
computer program
programming language
heat exchange process
conversion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2318-371f2fde330e2bdbd7bb4309d0d9737c02ccce2e2da70f398409238650e888323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0910-1150
0000-0002-6462-4299
0000-0002-0385-7603
PQID 2719005231
PQPubID 326300
PageCount 8
ParticipantIDs proquest_journals_2719005231
crossref_primary_10_3103_S0967091222050138
crossref_citationtrail_10_3103_S0967091222050138
springer_journals_10_3103_S0967091222050138
PublicationCentury 2000
PublicationDate 20220500
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 5
  year: 2022
  text: 20220500
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: London
PublicationTitle Steel in translation
PublicationTitleAbbrev Steel Transl
PublicationYear 2022
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References Bigeev V.A., Kolesnikov Yu.A. Prediction of technological parameters of steel smelting in a converter using siderite, Teoriya i tekhnologiya metallurgicheskogo proizvodstva. Sbornik nauchnykh trudov (Theory and Technology of Metallurgical Production. Transactions), Kolokol’tsev, V.M., Ed., Magnitogorsk: Magnitogorskii Gos. Tekh. Univ. im. G.I. Nosova, 2011, vol. 11, pp. 30–36.
TangY.FabritiusT.HärkkiJ.Mathematical modeling of the argon oxygen decarburization converter exhaust gas system at the reduction stageAppl. Math. Modell.20052949751410.1016/j.apm.2004.09.011
Zhul’kovskii, O.A., Numerical study of operating temperature of top converter lance barrel, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 1998, no. 1, pp. 16–19.
Kabulova, E.G., Kosareva, I.N., Karpova, V.A., and Gridneva, G., Modeling of steel smelting in metallurgical production, Vestn. Nats. Tekh. Univ. Kharkovskii Politekh. Inst., 2015, no. 53, pp. 14–18.
AnderssonN.TillianderA.JonssonL.T.I.JonssonP.Fundamental decarburisation model of AOD processIronmaking Steelmaking2013403903971:CAS:528:DC%2BC3sXpsFagtr8%3D10.1179/1743281212Y.0000000060
Litvinenko, E.F., Simkin, A.I., and Sokol, S.P., Operation of converter smelting control system in information-advising mode, Avtomatizatsiya i komp’yuternyie tekhnologii. Tezisy dokladov uchastnikov Mezhdunarodnoi nauchno-prakticheskoi konferentsii, posvyashchennoi 50-letiyu kafedry avtomatizatsii tekhnologicheskikh protsessov i proizvodstv (Automation and Computer Technologies. Abstracts of the Int. Sci. and Pract. Conf. Dedicated to the 50th Anniversary of the Chair of Automation of Technological Processes and Production), Mariupol: Priazovskii Gos. Tekh. Univ., 2012, p. 34.
Morozov, A.A., Shelukhin, S.A., and Khrapko, S.A., Mathematical model of metal blowing with oxygen in a converter, Azovstal’-98. Tezisy dokladov nauchno-tekhnicheskoi konferentsii molodykh spetsialistov (Azovstal-98: Abstracts of the Sci. and Tech. Conf. of Young Specialists), Mariupol, 1998, pp. 23–24.
Krivonosov, A., Krivolapov, A., Kaplunov, Yu., Pirozhenko, A., and Gurylev, E., Automatic control system of technological process of converter gas outlet, Sovrem. Tekhnol. Avtom., 2013, no. 4, pp. 42–46.
Panteikov, S.P., Upper blowing devices of oxygen converters in Ukraine: State, problems, development prospects, Sbornik nauchnykh trudov DGTU (tekhnicheskie nauki) (Transactions of DSTU (Technical Sciences)), Dneprodzerzhinsk: Dneprodzerzhinkii Gos. Tekh. Univ., 2005, pp. 22–32.
Maksimov, P., Measuring probe for automatic determination of melting parameters in converter, Sovrem. Tekhnol. Avtom., 2007, no. 4, pp. 36–39.
KolesnikovYu.A.BigeevV.A.SergeevD.S.Modeling of steelmaking in BOF based on physical, chemical and thermal processesIzv. Vyssh. Uchebn. Zaved. Chern. Metall.2017606987051:CAS:528:DC%2BC1MXhtFKntrzM10.17073/0368-0797-2017-9-698-705
DiazJ.FernándezF.J.SuárezI.Hot metal temperature prediction at basic-lined oxygen furnace (BOF) converter using IR thermometry and forecasting techniquesEnergies20191232351:CAS:528:DC%2BB3cXhslOksrY%3D10.3390/en12173235
Suvorov, S.A. and Kozlov, V.V., Nauchnye printsipy tekhnologii ogneuporov. Uchebnoe posobie (Scientific Principles of Refractory Technology: Textbook), St. Petersburg: Izd-vo St.-Peterbg. Gos. Tekhnol. Inst. (Tekh. Univ.), 2009.
SarkarR.GuptaP.BasuS.BallalN.Dynamic modeling of LD converter steelmaking: Reaction modeling using Gibbs’ free energy minimizationMetall. Mater. Trans. B2015469619761:CAS:528:DC%2BC2MXlsVaktg%3D%3D10.1007/s11663-014-0245-2
De la CruzS.BarronM.A.MedinaD.Y.ReyesJ.Lance design for argon bubbling in molten steelWorld J. Eng. Technol.2020831732810.4236/wjet.2020.83025
Microsoft. C# Documentation. https://docs.microsoft.com/en-us/dotnet/csharp/. Cited May 1, 2022.
LytvynyukY.CorusD.SchenkJ.LeobenM.HieblerM.SormannA.Thermodynamic and kinetic model of the converter steelmaking process. Part 1: The description of the BOF modelSteel Res. Int.2014855375431:CAS:528:DC%2BC3sXhslaqs7rN10.1002/srin.201300272
CaoL.WangYa.LiuQ.FengX.Physical and mathematical modeling of multiphase flows in a converterISIF Int.2018585735841:CAS:528:DC%2BC1cXhtlWmtb3J10.2355/isijinternational.ISIJINT-2017-680
GouH.IronsG.A.LuW.K.Mathematical modeling of postcombustion in a KOBM converterMetall. Trans. B19932417918810.1007/BF02657884
Dogan, N., Mathematical modelling of oxygen steelmaking, PhD Dissertation, Melbourne, Australia: Mathematics Discipline Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, 2011.
DeringD.SwartzC.DoganN.Dynamic modeling and simulation of basic oxygen furnace (BOF) operationProcesses202084831:CAS:528:DC%2BB3cXhslSrt77E10.3390/pr8040483
Zborshchik, A.M., Teoreticheskie osnovy metallurgicheskogo proizvodstva. Konspekt lektsii (Theoretical Foundations of Metallurgical Production: Lecture Notes), Donetsk: Donetskii Nats. Tekh. Univ., 2008.
Ruuska, J., Special measurements and control models for a basic oxygen furnace (BOF), PhD Dissertation, Oulu, Finland, 2012. http://cc.oulu.fi/~kamahei/y/ casr/vk/ruuska.pdf. Cited August 10, 2021
Computer simulator Sike. Steel smelting in a converter. https://publishernews.ru/PressRelease/PressReleaseShow.asp?id=528210. Cited August 10, 2021.
DeringD.SwartzC.DoganN.A dynamic optimization framework for basic oxygen furnace operationChem. Eng. Sci.20212411166531:CAS:528:DC%2BB3MXhtVKlsL7P10.1016/j.ces.2021.116653
Yaroshenko, A.V., Sinel’nikov, V.A., Lavrov, A.S., and Kopylov, A.F., Praktika konverternogo proizvodstva stali (BOF Steelmaking Practice), Lipetsk: OAO NLMK, 2012.
Kol’man, T. and Yandl, Kh., Comparative analysis of oxygen converters: Assessment of technical service and technological process, Chern. Met., 2014, no. 5, pp. 43–49.
Kumari, V., Mathematical modelling of basic oxygen steel making process, Master’s Thesis, Rourkela, 2015. https://core.ac.uk/download/pdf/80148601.pdf. Cited May 1, 2022.
Website of the OP-06 department of the PJSC Tyazhpromavtomatika. Automatic control system for converter electric drives. https://chao-tyazhpromavtomatika.uaprom.net/a94154-asu-elektroprivodami-konvertera.html. Cited August 10, 2021.
Penz, F.M., Experimental research and mathematical modelling of the melting and dissolution behaviour of scrap in liquid hot metal, PhD Dissertation, Leoben, Austria: Montanuniversität Leoben, 2019.
WuL.YangN.YouX.XingK.HuY.A temperature prediction model of converters based on gas analysisProcedia Earth Planet. Sci.2011214191:CAS:528:DC%2BC3MXhsFags7vN10.1016/j.proeps.2011.09.003
Dul’nev, G.N., Parfenov, V.G., and Sigalov, A.V., Primenenie EVM dlya resheniya zadach teploobmena (Computer Application for Solving Heat Transfer Problems), Moscow: Vysshaya Shkola, 1990.
Jo, H., Hwang, H.J., Phan, D., Lee, Yu., and Jang, H., Endpoint temperature prediction model for LD converters using machine-learning techniques, Proc. 2019 IEEE 6th Int. Conf. on Industrial Engineering and Applications (ICIEA), Tokyo, 2019, IEEE, 2019, pp. 22–26. https://doi.org/10.1109/IEA.2019.8715073
Samarskii, A.A., Teoriya raznostnykh skhem (Theory of Difference Schemes), Moscow: Nauka, 1989.
Rout, B.K., Modelling of dephosphorization in oxygen steelmaking, PhD Dissertation, Melbourne, Australia, 2018. https://researchbank.swinburne.edu.au/file/ 28bcd64e-5f32-45c7-8bef-ddf5063d95f5/1/bapin_rout_ thesis.pdf. Cited May 1, 2022.
Odenthal, H.-J., Falkenreck, U., and Schlüter, J., CFD-simulation of multiphase melt flows in steelmaking converters, Proc. European Conf. on Computational Fluid Dynamics (ECCOMAS CFD 2006), Delft, Netherlands, 2006.
BarronM.A.MedinaD.Y.HilerioI.CFD analysis of influence of slag viscosity on the splashing process in an oxygen steelmaking converterModel. Numer. Simul. Mater. Sci.20133909310.4236/mnsms.2013.33012
Chistyakova, T.B., Kudlai, V.A., and Novozhilova, I.V., Decision support system for the operation of refractory lining of steelmaking converters, Izv. St.-Peterbg. Gos. Tekhnol. Inst. (Tekh. Univ.), 2016, no. 37, pp. 60–66.
Gherfi, S.K., Bendjama, H., Bouhouche, S., and Meradi, H., Neural model identification of metallurgical process in oxygen converter, Proc. 12th Int. Multidisciplinary Sci. GeoConf. of Modern Management of Mine Producing, Geology and Environmental Protection (SGEM 2012), Albena, 2012, vol. 1, pp. 683–690. http://toc.proceedings.com/19962webtoc.pdf. Cited May 1, 2022.
Kruskopf, A., Multiphysical modeling approach for basic oxygen steelmaking process, PhD Dissertation, Helsinki, Finland, 2018. https://aaltodoc.aalto.fi/bitstream/handle/123456789/29573/isbn9789526077956.pdf? sequence=4&isAllowed=y. Cited October 8, 2021.
Suvorov, S.A. and Kozlov, V.V., Ekspluatatsiya futerovok i konstruktsii, vypolnennykh iz ogneupornykh materialov (Operation of Linings and Structures Made of Refractory Materials), St. Petersburg: Izd-vo St.-Peterbg. Gos. Tekhnol. Inst. (Tekh. Univ.), 2011.
Zhul’kovskii, O.A., Zhul’kovskaya, I.I., and Babenko, M.V., Features of mathematical modeling of combined heat transfer processes in technological systems, Mat. Model., 2016, no. 1, pp. 7–10.
Hofinger, S., Hubmer, R., and Schutt, S., Steel Expert takes command—Optimized performance on BOF converter, Technical contribution to the 16th Automation and Industrial IT Seminar, Rio de Janeiro, 2012, pp. 408–420. https://doi.org/10.5151/2594-5335-22654
Brooks, G.A., Dogan, N., Alam, M., Naser, J., and Rhamdhani, M.A., Developments in the modelling of oxygen steelmaking, Univ. Wollongong Res. Online, 2011, pp. 1–15. https://ro.uow.edu.au/engpapers/1631. Cited October 8, 2021.
GaoC.ShenM.WangL.ChuM.End-point static control of basic oxygen furnace (BOF) steelmaking based on wavelet transform weighted twin support vector regressionComplexity20192019740872510.1155/2019/7408725
FengK.YangL.SuB.FengW.WangL.An integration model for converter molten steel end temperature prediction based on Bayesian formulaSteel Res. Int.20229321004331:CAS:528:DC%2BB3MXitFCitrrF10.1002/srin.202100433
PanteikovS.P.Stages of improvement for welded structures with five-nozzle
Yu.A. Kolesnikov (1527_CR10) 2017; 60
1527_CR13
1527_CR2
1527_CR1
1527_CR4
1527_CR3
1527_CR18
L. Cao (1527_CR8) 2018; 58
D. Dering (1527_CR12) 2021; 241
1527_CR14
1527_CR16
1527_CR6
S.P. Panteikov (1527_CR43) 2020; 50
1527_CR5
1527_CR7
1527_CR9
1527_CR45
1527_CR46
J. Diaz (1527_CR17) 2019; 12
H. Gou (1527_CR28) 1993; 24
1527_CR40
1527_CR41
1527_CR42
1527_CR47
1527_CR48
1527_CR49
N. Andersson (1527_CR32) 2013; 40
Y. Tang (1527_CR30) 2005; 29
1527_CR34
1527_CR31
1527_CR36
1527_CR37
1527_CR38
1527_CR39
R. Sarkar (1527_CR25) 2015; 46
D. Dering (1527_CR11) 2020; 8
S. De la Cruz (1527_CR44) 2020; 8
1527_CR21
1527_CR22
1527_CR23
1527_CR24
Y. Lytvynyuk (1527_CR33) 2014; 85
1527_CR20
1527_CR26
1527_CR27
K. Feng (1527_CR15) 2022; 93
L. Wu (1527_CR29) 2011; 2
C. Gao (1527_CR19) 2019; 2019
M.A. Barron (1527_CR35) 2013; 3
References_xml – reference: Zborshchik, A.M., Teoreticheskie osnovy metallurgicheskogo proizvodstva. Konspekt lektsii (Theoretical Foundations of Metallurgical Production: Lecture Notes), Donetsk: Donetskii Nats. Tekh. Univ., 2008.
– reference: Samarskii, A.A., Teoriya raznostnykh skhem (Theory of Difference Schemes), Moscow: Nauka, 1989.
– reference: Kabulova, E.G., Kosareva, I.N., Karpova, V.A., and Gridneva, G., Modeling of steel smelting in metallurgical production, Vestn. Nats. Tekh. Univ. Kharkovskii Politekh. Inst., 2015, no. 53, pp. 14–18.
– reference: KolesnikovYu.A.BigeevV.A.SergeevD.S.Modeling of steelmaking in BOF based on physical, chemical and thermal processesIzv. Vyssh. Uchebn. Zaved. Chern. Metall.2017606987051:CAS:528:DC%2BC1MXhtFKntrzM10.17073/0368-0797-2017-9-698-705
– reference: PanteikovS.P.Stages of improvement for welded structures with five-nozzle lance heads in the converter shop of public joint stock company “Dneprovsky Metallurgical Combine”Steel Transl.20205075676110.3103/S0967091220110108
– reference: DeringD.SwartzC.DoganN.A dynamic optimization framework for basic oxygen furnace operationChem. Eng. Sci.20212411166531:CAS:528:DC%2BB3MXhtVKlsL7P10.1016/j.ces.2021.116653
– reference: DiazJ.FernándezF.J.SuárezI.Hot metal temperature prediction at basic-lined oxygen furnace (BOF) converter using IR thermometry and forecasting techniquesEnergies20191232351:CAS:528:DC%2BB3cXhslOksrY%3D10.3390/en12173235
– reference: Kumari, V., Mathematical modelling of basic oxygen steel making process, Master’s Thesis, Rourkela, 2015. https://core.ac.uk/download/pdf/80148601.pdf. Cited May 1, 2022.
– reference: TangY.FabritiusT.HärkkiJ.Mathematical modeling of the argon oxygen decarburization converter exhaust gas system at the reduction stageAppl. Math. Modell.20052949751410.1016/j.apm.2004.09.011
– reference: Bigeev V.A., Kolesnikov Yu.A. Prediction of technological parameters of steel smelting in a converter using siderite, Teoriya i tekhnologiya metallurgicheskogo proizvodstva. Sbornik nauchnykh trudov (Theory and Technology of Metallurgical Production. Transactions), Kolokol’tsev, V.M., Ed., Magnitogorsk: Magnitogorskii Gos. Tekh. Univ. im. G.I. Nosova, 2011, vol. 11, pp. 30–36.
– reference: BarronM.A.MedinaD.Y.HilerioI.CFD analysis of influence of slag viscosity on the splashing process in an oxygen steelmaking converterModel. Numer. Simul. Mater. Sci.20133909310.4236/mnsms.2013.33012
– reference: Maksimov, P., Measuring probe for automatic determination of melting parameters in converter, Sovrem. Tekhnol. Avtom., 2007, no. 4, pp. 36–39.
– reference: CaoL.WangYa.LiuQ.FengX.Physical and mathematical modeling of multiphase flows in a converterISIF Int.2018585735841:CAS:528:DC%2BC1cXhtlWmtb3J10.2355/isijinternational.ISIJINT-2017-680
– reference: Brooks, G.A., Dogan, N., Alam, M., Naser, J., and Rhamdhani, M.A., Developments in the modelling of oxygen steelmaking, Univ. Wollongong Res. Online, 2011, pp. 1–15. https://ro.uow.edu.au/engpapers/1631. Cited October 8, 2021.
– reference: De la CruzS.BarronM.A.MedinaD.Y.ReyesJ.Lance design for argon bubbling in molten steelWorld J. Eng. Technol.2020831732810.4236/wjet.2020.83025
– reference: Zhul’kovskii, O.A., Zhul’kovskaya, I.I., and Babenko, M.V., Features of mathematical modeling of combined heat transfer processes in technological systems, Mat. Model., 2016, no. 1, pp. 7–10.
– reference: AnderssonN.TillianderA.JonssonL.T.I.JonssonP.Fundamental decarburisation model of AOD processIronmaking Steelmaking2013403903971:CAS:528:DC%2BC3sXpsFagtr8%3D10.1179/1743281212Y.0000000060
– reference: Odenthal, H.-J., Falkenreck, U., and Schlüter, J., CFD-simulation of multiphase melt flows in steelmaking converters, Proc. European Conf. on Computational Fluid Dynamics (ECCOMAS CFD 2006), Delft, Netherlands, 2006.
– reference: DeringD.SwartzC.DoganN.Dynamic modeling and simulation of basic oxygen furnace (BOF) operationProcesses202084831:CAS:528:DC%2BB3cXhslSrt77E10.3390/pr8040483
– reference: Simulation models in training and training systems. https://bookaa.ru/matematicheskoe-modelirovanie/ modeli-imitatory-v-trenazherno-obuchayu.html. Cited August 10, 2021.
– reference: METAL SPASE. Computer simulators and trainers. Software complexes. https://metalspace.ru/education-career/education/simulator/512-trenazhernyj-kompleks-kislorodno-konverternyj-protsess.html. Cited August 10, 2021.
– reference: Litvinenko, E.F., Simkin, A.I., and Sokol, S.P., Operation of converter smelting control system in information-advising mode, Avtomatizatsiya i komp’yuternyie tekhnologii. Tezisy dokladov uchastnikov Mezhdunarodnoi nauchno-prakticheskoi konferentsii, posvyashchennoi 50-letiyu kafedry avtomatizatsii tekhnologicheskikh protsessov i proizvodstv (Automation and Computer Technologies. Abstracts of the Int. Sci. and Pract. Conf. Dedicated to the 50th Anniversary of the Chair of Automation of Technological Processes and Production), Mariupol: Priazovskii Gos. Tekh. Univ., 2012, p. 34.
– reference: Ruuska, J., Special measurements and control models for a basic oxygen furnace (BOF), PhD Dissertation, Oulu, Finland, 2012. http://cc.oulu.fi/~kamahei/y/ casr/vk/ruuska.pdf. Cited August 10, 2021
– reference: Gherfi, S.K., Bendjama, H., Bouhouche, S., and Meradi, H., Neural model identification of metallurgical process in oxygen converter, Proc. 12th Int. Multidisciplinary Sci. GeoConf. of Modern Management of Mine Producing, Geology and Environmental Protection (SGEM 2012), Albena, 2012, vol. 1, pp. 683–690. http://toc.proceedings.com/19962webtoc.pdf. Cited May 1, 2022.
– reference: Hofinger, S., Hubmer, R., and Schutt, S., Steel Expert takes command—Optimized performance on BOF converter, Technical contribution to the 16th Automation and Industrial IT Seminar, Rio de Janeiro, 2012, pp. 408–420. https://doi.org/10.5151/2594-5335-22654
– reference: GouH.IronsG.A.LuW.K.Mathematical modeling of postcombustion in a KOBM converterMetall. Trans. B19932417918810.1007/BF02657884
– reference: Chistyakova, T.B., Kudlai, V.A., and Novozhilova, I.V., Decision support system for the operation of refractory lining of steelmaking converters, Izv. St.-Peterbg. Gos. Tekhnol. Inst. (Tekh. Univ.), 2016, no. 37, pp. 60–66.
– reference: Panteikov, S.P., Upper blowing devices of oxygen converters in Ukraine: State, problems, development prospects, Sbornik nauchnykh trudov DGTU (tekhnicheskie nauki) (Transactions of DSTU (Technical Sciences)), Dneprodzerzhinsk: Dneprodzerzhinkii Gos. Tekh. Univ., 2005, pp. 22–32.
– reference: Website of the OP-06 department of the PJSC Tyazhpromavtomatika. Automatic control system for converter electric drives. https://chao-tyazhpromavtomatika.uaprom.net/a94154-asu-elektroprivodami-konvertera.html. Cited August 10, 2021.
– reference: GaoC.ShenM.WangL.ChuM.End-point static control of basic oxygen furnace (BOF) steelmaking based on wavelet transform weighted twin support vector regressionComplexity20192019740872510.1155/2019/7408725
– reference: Computer simulator Sike. Steel smelting in a converter. https://publishernews.ru/PressRelease/PressReleaseShow.asp?id=528210. Cited August 10, 2021.
– reference: Kruskopf, A., Multiphysical modeling approach for basic oxygen steelmaking process, PhD Dissertation, Helsinki, Finland, 2018. https://aaltodoc.aalto.fi/bitstream/handle/123456789/29573/isbn9789526077956.pdf? sequence=4&isAllowed=y. Cited October 8, 2021.
– reference: FengK.YangL.SuB.FengW.WangL.An integration model for converter molten steel end temperature prediction based on Bayesian formulaSteel Res. Int.20229321004331:CAS:528:DC%2BB3MXitFCitrrF10.1002/srin.202100433
– reference: LytvynyukY.CorusD.SchenkJ.LeobenM.HieblerM.SormannA.Thermodynamic and kinetic model of the converter steelmaking process. Part 1: The description of the BOF modelSteel Res. Int.2014855375431:CAS:528:DC%2BC3sXhslaqs7rN10.1002/srin.201300272
– reference: Jo, H., Hwang, H.J., Phan, D., Lee, Yu., and Jang, H., Endpoint temperature prediction model for LD converters using machine-learning techniques, Proc. 2019 IEEE 6th Int. Conf. on Industrial Engineering and Applications (ICIEA), Tokyo, 2019, IEEE, 2019, pp. 22–26. https://doi.org/10.1109/IEA.2019.8715073
– reference: Yaroshenko, A.V., Sinel’nikov, V.A., Lavrov, A.S., and Kopylov, A.F., Praktika konverternogo proizvodstva stali (BOF Steelmaking Practice), Lipetsk: OAO NLMK, 2012.
– reference: WuL.YangN.YouX.XingK.HuY.A temperature prediction model of converters based on gas analysisProcedia Earth Planet. Sci.2011214191:CAS:528:DC%2BC3MXhsFags7vN10.1016/j.proeps.2011.09.003
– reference: Rout, B.K., Modelling of dephosphorization in oxygen steelmaking, PhD Dissertation, Melbourne, Australia, 2018. https://researchbank.swinburne.edu.au/file/ 28bcd64e-5f32-45c7-8bef-ddf5063d95f5/1/bapin_rout_ thesis.pdf. Cited May 1, 2022.
– reference: SarkarR.GuptaP.BasuS.BallalN.Dynamic modeling of LD converter steelmaking: Reaction modeling using Gibbs’ free energy minimizationMetall. Mater. Trans. B2015469619761:CAS:528:DC%2BC2MXlsVaktg%3D%3D10.1007/s11663-014-0245-2
– reference: Penz, F.M., Experimental research and mathematical modelling of the melting and dissolution behaviour of scrap in liquid hot metal, PhD Dissertation, Leoben, Austria: Montanuniversität Leoben, 2019.
– reference: Krivonosov, A., Krivolapov, A., Kaplunov, Yu., Pirozhenko, A., and Gurylev, E., Automatic control system of technological process of converter gas outlet, Sovrem. Tekhnol. Avtom., 2013, no. 4, pp. 42–46.
– reference: Dogan, N., Mathematical modelling of oxygen steelmaking, PhD Dissertation, Melbourne, Australia: Mathematics Discipline Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, 2011.
– reference: Microsoft. C# Documentation. https://docs.microsoft.com/en-us/dotnet/csharp/. Cited May 1, 2022.
– reference: Suvorov, S.A. and Kozlov, V.V., Ekspluatatsiya futerovok i konstruktsii, vypolnennykh iz ogneupornykh materialov (Operation of Linings and Structures Made of Refractory Materials), St. Petersburg: Izd-vo St.-Peterbg. Gos. Tekhnol. Inst. (Tekh. Univ.), 2011.
– reference: Suvorov, S.A. and Kozlov, V.V., Nauchnye printsipy tekhnologii ogneuporov. Uchebnoe posobie (Scientific Principles of Refractory Technology: Textbook), St. Petersburg: Izd-vo St.-Peterbg. Gos. Tekhnol. Inst. (Tekh. Univ.), 2009.
– reference: Zhul’kovskii, O.A., Numerical study of operating temperature of top converter lance barrel, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 1998, no. 1, pp. 16–19.
– reference: Kol’man, T. and Yandl, Kh., Comparative analysis of oxygen converters: Assessment of technical service and technological process, Chern. Met., 2014, no. 5, pp. 43–49.
– reference: Morozov, A.A., Shelukhin, S.A., and Khrapko, S.A., Mathematical model of metal blowing with oxygen in a converter, Azovstal’-98. Tezisy dokladov nauchno-tekhnicheskoi konferentsii molodykh spetsialistov (Azovstal-98: Abstracts of the Sci. and Tech. Conf. of Young Specialists), Mariupol, 1998, pp. 23–24.
– reference: Dul’nev, G.N., Parfenov, V.G., and Sigalov, A.V., Primenenie EVM dlya resheniya zadach teploobmena (Computer Application for Solving Heat Transfer Problems), Moscow: Vysshaya Shkola, 1990.
– ident: 1527_CR1
– volume: 60
  start-page: 698
  year: 2017
  ident: 1527_CR10
  publication-title: Izv. Vyssh. Uchebn. Zaved. Chern. Metall.
  doi: 10.17073/0368-0797-2017-9-698-705
– ident: 1527_CR40
– ident: 1527_CR48
– volume: 24
  start-page: 179
  year: 1993
  ident: 1527_CR28
  publication-title: Metall. Trans. B
  doi: 10.1007/BF02657884
– ident: 1527_CR38
– volume: 12
  start-page: 3235
  year: 2019
  ident: 1527_CR17
  publication-title: Energies
  doi: 10.3390/en12173235
– ident: 1527_CR4
– volume: 29
  start-page: 497
  year: 2005
  ident: 1527_CR30
  publication-title: Appl. Math. Modell.
  doi: 10.1016/j.apm.2004.09.011
– ident: 1527_CR34
– ident: 1527_CR2
– volume: 50
  start-page: 756
  year: 2020
  ident: 1527_CR43
  publication-title: Steel Transl.
  doi: 10.3103/S0967091220110108
– ident: 1527_CR27
– ident: 1527_CR24
  doi: 10.1109/IEA.2019.8715073
– ident: 1527_CR23
– ident: 1527_CR47
– ident: 1527_CR5
– volume: 46
  start-page: 961
  year: 2015
  ident: 1527_CR25
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/s11663-014-0245-2
– ident: 1527_CR37
– volume: 8
  start-page: 317
  year: 2020
  ident: 1527_CR44
  publication-title: World J. Eng. Technol.
  doi: 10.4236/wjet.2020.83025
– ident: 1527_CR9
– ident: 1527_CR16
– ident: 1527_CR49
– ident: 1527_CR26
– ident: 1527_CR42
– volume: 2019
  start-page: 7408725
  year: 2019
  ident: 1527_CR19
  publication-title: Complexity
  doi: 10.1155/2019/7408725
– ident: 1527_CR22
– ident: 1527_CR46
– volume: 3
  start-page: 90
  year: 2013
  ident: 1527_CR35
  publication-title: Model. Numer. Simul. Mater. Sci.
  doi: 10.4236/mnsms.2013.33012
– volume: 85
  start-page: 537
  year: 2014
  ident: 1527_CR33
  publication-title: Steel Res. Int.
  doi: 10.1002/srin.201300272
– ident: 1527_CR6
– volume: 8
  start-page: 483
  year: 2020
  ident: 1527_CR11
  publication-title: Processes
  doi: 10.3390/pr8040483
– ident: 1527_CR13
– volume: 40
  start-page: 390
  year: 2013
  ident: 1527_CR32
  publication-title: Ironmaking Steelmaking
  doi: 10.1179/1743281212Y.0000000060
– ident: 1527_CR36
– ident: 1527_CR20
  doi: 10.5151/2594-5335-22654
– volume: 241
  start-page: 116653
  year: 2021
  ident: 1527_CR12
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2021.116653
– volume: 93
  start-page: 2100433
  year: 2022
  ident: 1527_CR15
  publication-title: Steel Res. Int.
  doi: 10.1002/srin.202100433
– volume: 2
  start-page: 14
  year: 2011
  ident: 1527_CR29
  publication-title: Procedia Earth Planet. Sci.
  doi: 10.1016/j.proeps.2011.09.003
– ident: 1527_CR41
– ident: 1527_CR21
– ident: 1527_CR45
– ident: 1527_CR39
– volume: 58
  start-page: 573
  year: 2018
  ident: 1527_CR8
  publication-title: ISIF Int.
  doi: 10.2355/isijinternational.ISIJINT-2017-680
– ident: 1527_CR3
– ident: 1527_CR18
– ident: 1527_CR31
– ident: 1527_CR7
– ident: 1527_CR14
SSID ssj0056251
Score 2.2239218
Snippet —On the basis of mathematical modeling and object-oriented programming, a computer information-modeling forecasting system (IMFS) for thermal mode of top lance...
Abstract—On the basis of mathematical modeling and object-oriented programming, a computer information-modeling forecasting system (IMFS) for thermal mode of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 495
SubjectTerms Approximation
Blowing
Boundary conditions
Chemistry and Materials Science
Conduction heating
Conductive heat transfer
Cooling systems
Cylindrical coordinates
Design parameters
Differential equations
Finite difference method
Forecasting
Interpolation
Materials Science
Mathematical models
Object oriented programming
Object-oriented languages
Oxygen lances
Service life
Temperature distribution
Visual programming languages
Title Information-Modeling Forecasting System for Thermal Mode of Top Converter Lance
URI https://link.springer.com/article/10.3103/S0967091222050138
https://www.proquest.com/docview/2719005231
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1935-0988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056251
  issn: 0967-0912
  databaseCode: RSV
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1B4QAHdkTZ5AMnkIVjt0l8RBUVp4JoQb1F3iIhVW3VFL4fj5NQdgnOebYSj-2ZySwP4EzLyMZRHNNUyTZtCcaosjyiOVNGxTa2QuaBbCLp9dLhUN5VddxFne1ehyTDTR38SiYu-97YTrx241gaivG1ZVjx2i5Fvob7_mN9_aJBH2jyPJoivAxlfj_FR2W0sDA_BUWDrulu_ustt2CjMi3JVbkXtmHJjXdg_V3DwV24raqPUBoUadCwGJ0gPadRBSZAk7KDOfEo4neQh44I4sgkJ4PJlHQwSR2zQEkont6Dh-71oHNDK0oFarwhl_rrJMp5bp0QzHFttU209gKSllmZiMQwboxx3HGrEpYLie4fR1pQ5ryrLLjYh8Z4MnYHQKT_SokDHVo1wqmWs5Fra63ylhNMN4HVa5uZqt840l6MMu934FplX9aqCedvQ6Zls43fwMe1wLLq3BUZT7yBg3-6oyZc1AJaPP5xssM_oY9gjWMVRMh7PIbGfPbsTmDVvMyfitlp2I6v88fVMQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BQQIO7Iiy-sAJFOHYaVIfUUVVRCmIFtRb5C0SUtVWTeH78WSh7BKc82wlHtszk1kewIkSvgn9MPTqUtS8gFPqScN8L6FSy9CEhoskI5uIOp16vy_uijrutMx2L0OS2U2d-ZWUn3edsR057cawNBTja_OwEDiFhQ3z77uP5fWLBn1Gk-fQHsLzUOb3U3xURjML81NQNNM1zbV_veU6rBamJbnI98IGzNnhJqy8azi4BbdF9RFKw0MaNCxGJ0jPqWWKCdAk72BOHIq4HeSgA4I4MkpIbzQmDUxSxyxQkhVPb8ND87LXaHkFpYKnnSFXd9eJn7DEWM6pZcooEynlBCQMNSLikaZMa22ZZUZGNOEC3T-GtKDUOleZM74DleFoaHeBCPeVAgdatGq4lYE1vq0pJZPAcqqqQMu1jXXRbxxpLwax8ztwreIva1WF07ch47zZxm_gg1JgcXHu0phFzsDBP91-Fc5KAc0e_zjZ3p_Qx7DU6t204_ZV53oflhlWRGQ5kAdQmU6e7SEs6pfpUzo5yrbmK_s02BU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEH7-J0ah58UsLSpGuXR5kORZmDTdlbSZMUhNGNbfr7zenFeQfxuV9Dm5Mm3-m5fACnsfRM4AUBbSrZoL5gjCrDPZowpVVgAiNkkolNhJ1OczCQ3ULndFpmu5chybymAbs0pbP62CT1zMdkot5zxDt0Jx3HMlGMtS3Cko959Oiu9x7LrRjJfSaZ59AU4XlY8_shPh5Mc7b5KUCanTvtjX8_8SasF5STXORrZAsWbLoNa-8aEe7AfVGVhFaiKI-GReoEZTu1mmJiNMk7mxOHIm5lOeiQII6MEtIfjUkLk9cxO5RkRdW78NC-6reuaSG1QLUjeE23zXgJT4wVglkem9iEcewMJw0zMhShZlxrbbnlRoUsERLdQo5yocw6F1pwsQeVdJTafSDSvaXEGy2yHWGVb41nG3GsEt8KFleBlfMc6aIPOcphDCPnj-BcRV_mqgpnb7eM8yYcv4FrpfGi4nucRjx0xAf_gHtVOC-NNb_842AHf0KfwEr3sh3d3XRuD2GVY6FElhpZg8ps8myPYFm_zJ6mk-Nslb4C99Lg-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Information-Modeling+Forecasting+System+for+Thermal+Mode+of+Top+Converter+Lance&rft.jtitle=Steel+in+translation&rft.au=Zhul%E2%80%99kovskii%2C+O.+A.&rft.au=Panteikov%2C+S.+P.&rft.au=Zhul%E2%80%99kovskaya%2C+I.+I.&rft.date=2022-05-01&rft.issn=0967-0912&rft.eissn=1935-0988&rft.volume=52&rft.issue=5&rft.spage=495&rft.epage=502&rft_id=info:doi/10.3103%2FS0967091222050138&rft.externalDBID=n%2Fa&rft.externalDocID=10_3103_S0967091222050138
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0912&client=summon