Information-Modeling Forecasting System for Thermal Mode of Top Converter Lance
—On the basis of mathematical modeling and object-oriented programming, a computer information-modeling forecasting system (IMFS) for thermal mode of top lance barrel (TLB) of oxygen converter was developed in order to fulfill the urgent and economically feasible task of determining the compliance o...
Saved in:
| Published in: | Steel in translation Vol. 52; no. 5; pp. 495 - 502 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Moscow
Pleiades Publishing
01.05.2022
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0967-0912, 1935-0988 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | —On the basis of mathematical modeling and object-oriented programming, a computer information-modeling forecasting system (IMFS) for thermal mode of top lance barrel (TLB) of oxygen converter was developed in order to fulfill the urgent and economically feasible task of determining the compliance of input technological parameters with certain safety criteria for conducting converter melting. The program was created in the form of a Windows-oriented application by refining the previously developed mathematical model of the temperature mode of the top converter lance barrel using the object-oriented programming language C# in Microsoft Visual Studio 2019 IDE. The mathematical model provides the solution of differential heat conduction equation in cylindrical coordinates (two-dimensional formulation) with assignment of the initial (temperature distribution in the computational domain) and boundary conditions of the II and III kind (respectively, on the outer and inner surfaces of the TLB). The finite difference approximation of the heat conduction equation and boundary conditions was obtained by the integro-interpolation method (balance method). A numerical sweep method (modified Gauss method) and an unconditionally stable implicit scheme were used to calculate the temperature field. Thermophysical values were obtained by approximating the corresponding tabular values. The application does not put forward special requirements for the computer infrastructure, operates locally (without the need for access to Internet), does not require special skills to work with it, having an intuitive user interface: the working area of the program consists of three windows (sections), in which the results of calculating the thermal mode of the TLB are displayed. The developed IMFS allows evaluating the design and technological parameters of the top blowing device as a criterion for its safe operation. Its application in the “advisor” mode ensures the optimal design of the top oxygen lances with a rational water-cooling system in order to ensure the proper thermal mode of the TLB throughout the entire operation period, as well as trouble-free operation of the blowing device, which is especially important for the conditions of converter shops in Ukraine equipped with outdated designs of top lances with low service life. |
|---|---|
| AbstractList | Abstract—On the basis of mathematical modeling and object-oriented programming, a computer information-modeling forecasting system (IMFS) for thermal mode of top lance barrel (TLB) of oxygen converter was developed in order to fulfill the urgent and economically feasible task of determining the compliance of input technological parameters with certain safety criteria for conducting converter melting. The program was created in the form of a Windows-oriented application by refining the previously developed mathematical model of the temperature mode of the top converter lance barrel using the object-oriented programming language C# in Microsoft Visual Studio 2019 IDE. The mathematical model provides the solution of differential heat conduction equation in cylindrical coordinates (two-dimensional formulation) with assignment of the initial (temperature distribution in the computational domain) and boundary conditions of the II and III kind (respectively, on the outer and inner surfaces of the TLB). The finite difference approximation of the heat conduction equation and boundary conditions was obtained by the integro-interpolation method (balance method). A numerical sweep method (modified Gauss method) and an unconditionally stable implicit scheme were used to calculate the temperature field. Thermophysical values were obtained by approximating the corresponding tabular values. The application does not put forward special requirements for the computer infrastructure, operates locally (without the need for access to Internet), does not require special skills to work with it, having an intuitive user interface: the working area of the program consists of three windows (sections), in which the results of calculating the thermal mode of the TLB are displayed. The developed IMFS allows evaluating the design and technological parameters of the top blowing device as a criterion for its safe operation. Its application in the “advisor” mode ensures the optimal design of the top oxygen lances with a rational water-cooling system in order to ensure the proper thermal mode of the TLB throughout the entire operation period, as well as trouble-free operation of the blowing device, which is especially important for the conditions of converter shops in Ukraine equipped with outdated designs of top lances with low service life. —On the basis of mathematical modeling and object-oriented programming, a computer information-modeling forecasting system (IMFS) for thermal mode of top lance barrel (TLB) of oxygen converter was developed in order to fulfill the urgent and economically feasible task of determining the compliance of input technological parameters with certain safety criteria for conducting converter melting. The program was created in the form of a Windows-oriented application by refining the previously developed mathematical model of the temperature mode of the top converter lance barrel using the object-oriented programming language C# in Microsoft Visual Studio 2019 IDE. The mathematical model provides the solution of differential heat conduction equation in cylindrical coordinates (two-dimensional formulation) with assignment of the initial (temperature distribution in the computational domain) and boundary conditions of the II and III kind (respectively, on the outer and inner surfaces of the TLB). The finite difference approximation of the heat conduction equation and boundary conditions was obtained by the integro-interpolation method (balance method). A numerical sweep method (modified Gauss method) and an unconditionally stable implicit scheme were used to calculate the temperature field. Thermophysical values were obtained by approximating the corresponding tabular values. The application does not put forward special requirements for the computer infrastructure, operates locally (without the need for access to Internet), does not require special skills to work with it, having an intuitive user interface: the working area of the program consists of three windows (sections), in which the results of calculating the thermal mode of the TLB are displayed. The developed IMFS allows evaluating the design and technological parameters of the top blowing device as a criterion for its safe operation. Its application in the “advisor” mode ensures the optimal design of the top oxygen lances with a rational water-cooling system in order to ensure the proper thermal mode of the TLB throughout the entire operation period, as well as trouble-free operation of the blowing device, which is especially important for the conditions of converter shops in Ukraine equipped with outdated designs of top lances with low service life. |
| Author | Zhul’kovskii, O. A. Zhul’kovskaya, I. I. Panteikov, S. P. |
| Author_xml | – sequence: 1 givenname: O. A. orcidid: 0000-0003-0910-1150 surname: Zhul’kovskii fullname: Zhul’kovskii, O. A. email: olalzh@ukr.net organization: Dnepropetrovsk State Technical University – sequence: 2 givenname: S. P. orcidid: 0000-0002-0385-7603 surname: Panteikov fullname: Panteikov, S. P. email: ser_pant_in@ukr.net organization: Dnepropetrovsk State Technical University – sequence: 3 givenname: I. I. orcidid: 0000-0002-6462-4299 surname: Zhul’kovskaya fullname: Zhul’kovskaya, I. I. email: inivzh@gmail.com organization: Dnepropetrovsk State Technical University |
| BookMark | eNp9kNFKwzAUhoNMcJs-gHcBr6snyboklzKcDia7WL0ubXo6O7pkJp2wtzd1gqDoVQLn-_Kf_CMysM4iIdcMbgUDcbcGPZWgGeccUmBCnZEh0yJNQCs1IMN-nPTzCzIKYQuQTnnKhmS1sLXzu6JrnE2eXYVtYzd07jyaInT9fX0MHe5opGj2ihFtac9RV9PM7enM2Xf0HXq6LKzBS3JeF23Aq69zTF7mD9nsKVmuHhez-2ViuGAqEZLVvK5QCEBeVmUly3IiQFdQaSmkAW6MQY68KiTUQqsJaC7UNAVUSgkuxuTm9O7eu7cDhi7fuoO3MTLnkun4v5gTKXaijHcheKzzvW92hT_mDPK-t_xXb9GRPxzTdJ_9dL5o2n9NfjJDTLEb9N87_S19AMifgJ4 |
| CitedBy_id | crossref_primary_10_2355_isijinternational_ISIJINT_2025_069 |
| Cites_doi | 10.17073/0368-0797-2017-9-698-705 10.1007/BF02657884 10.3390/en12173235 10.1016/j.apm.2004.09.011 10.3103/S0967091220110108 10.1109/IEA.2019.8715073 10.1007/s11663-014-0245-2 10.4236/wjet.2020.83025 10.1155/2019/7408725 10.4236/mnsms.2013.33012 10.1002/srin.201300272 10.3390/pr8040483 10.1179/1743281212Y.0000000060 10.5151/2594-5335-22654 10.1016/j.ces.2021.116653 10.1002/srin.202100433 10.1016/j.proeps.2011.09.003 10.2355/isijinternational.ISIJINT-2017-680 |
| ContentType | Journal Article |
| Copyright | Allerton Press, Inc. 2022. ISSN 0967-0912, Steel in Translation, 2022, Vol. 52, No. 5, pp. 495–502. © Allerton Press, Inc., 2022. Russian Text © The Author(s), 2022, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Chernaya Metallurgiya, 2022, No. 5, pp. 354–364. |
| Copyright_xml | – notice: Allerton Press, Inc. 2022. ISSN 0967-0912, Steel in Translation, 2022, Vol. 52, No. 5, pp. 495–502. © Allerton Press, Inc., 2022. Russian Text © The Author(s), 2022, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Chernaya Metallurgiya, 2022, No. 5, pp. 354–364. |
| DBID | AAYXX CITATION 8BQ 8FD JG9 |
| DOI | 10.3103/S0967091222050138 |
| DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1935-0988 |
| EndPage | 502 |
| ExternalDocumentID | 10_3103_S0967091222050138 |
| GroupedDBID | -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 1N0 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 408 40D 40E 5VS 6NX 8FE 8FG 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACCUX ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD B-. BA0 BDATZ BENPR BGLVJ BGNMA CAG CCPQU COF CS3 D1I DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR I~X I~Z J-C JBSCW JZLTJ KB. KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J P9N PDBOC PF0 PT4 Q2X QOR QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SCM SDH SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 XU3 YLTOR Z7R Z7S Z7Y Z7Z Z85 ZMTXR ~A9 AAPKM AAYXX ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR CITATION PHGZM PHGZT PQGLB 8BQ 8FD JG9 |
| ID | FETCH-LOGICAL-c2318-371f2fde330e2bdbd7bb4309d0d9737c02ccce2e2da70f398409238650e888323 |
| IEDL.DBID | RSV |
| ISSN | 0967-0912 |
| IngestDate | Thu Sep 25 01:05:03 EDT 2025 Tue Nov 18 21:01:41 EST 2025 Sat Nov 29 05:29:07 EST 2025 Fri Feb 21 02:44:35 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | forecasting system oxygen converter mathematical model top lance computer program programming language heat exchange process conversion |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2318-371f2fde330e2bdbd7bb4309d0d9737c02ccce2e2da70f398409238650e888323 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0910-1150 0000-0002-6462-4299 0000-0002-0385-7603 |
| PQID | 2719005231 |
| PQPubID | 326300 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_2719005231 crossref_primary_10_3103_S0967091222050138 crossref_citationtrail_10_3103_S0967091222050138 springer_journals_10_3103_S0967091222050138 |
| PublicationCentury | 2000 |
| PublicationDate | 20220500 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 5 year: 2022 text: 20220500 |
| PublicationDecade | 2020 |
| PublicationPlace | Moscow |
| PublicationPlace_xml | – name: Moscow – name: London |
| PublicationTitle | Steel in translation |
| PublicationTitleAbbrev | Steel Transl |
| PublicationYear | 2022 |
| Publisher | Pleiades Publishing Springer Nature B.V |
| Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
| References | Bigeev V.A., Kolesnikov Yu.A. Prediction of technological parameters of steel smelting in a converter using siderite, Teoriya i tekhnologiya metallurgicheskogo proizvodstva. Sbornik nauchnykh trudov (Theory and Technology of Metallurgical Production. Transactions), Kolokol’tsev, V.M., Ed., Magnitogorsk: Magnitogorskii Gos. Tekh. Univ. im. G.I. Nosova, 2011, vol. 11, pp. 30–36. TangY.FabritiusT.HärkkiJ.Mathematical modeling of the argon oxygen decarburization converter exhaust gas system at the reduction stageAppl. Math. Modell.20052949751410.1016/j.apm.2004.09.011 Zhul’kovskii, O.A., Numerical study of operating temperature of top converter lance barrel, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 1998, no. 1, pp. 16–19. Kabulova, E.G., Kosareva, I.N., Karpova, V.A., and Gridneva, G., Modeling of steel smelting in metallurgical production, Vestn. Nats. Tekh. Univ. Kharkovskii Politekh. Inst., 2015, no. 53, pp. 14–18. AnderssonN.TillianderA.JonssonL.T.I.JonssonP.Fundamental decarburisation model of AOD processIronmaking Steelmaking2013403903971:CAS:528:DC%2BC3sXpsFagtr8%3D10.1179/1743281212Y.0000000060 Litvinenko, E.F., Simkin, A.I., and Sokol, S.P., Operation of converter smelting control system in information-advising mode, Avtomatizatsiya i komp’yuternyie tekhnologii. Tezisy dokladov uchastnikov Mezhdunarodnoi nauchno-prakticheskoi konferentsii, posvyashchennoi 50-letiyu kafedry avtomatizatsii tekhnologicheskikh protsessov i proizvodstv (Automation and Computer Technologies. Abstracts of the Int. Sci. and Pract. Conf. Dedicated to the 50th Anniversary of the Chair of Automation of Technological Processes and Production), Mariupol: Priazovskii Gos. Tekh. Univ., 2012, p. 34. Morozov, A.A., Shelukhin, S.A., and Khrapko, S.A., Mathematical model of metal blowing with oxygen in a converter, Azovstal’-98. Tezisy dokladov nauchno-tekhnicheskoi konferentsii molodykh spetsialistov (Azovstal-98: Abstracts of the Sci. and Tech. Conf. of Young Specialists), Mariupol, 1998, pp. 23–24. Krivonosov, A., Krivolapov, A., Kaplunov, Yu., Pirozhenko, A., and Gurylev, E., Automatic control system of technological process of converter gas outlet, Sovrem. Tekhnol. Avtom., 2013, no. 4, pp. 42–46. Panteikov, S.P., Upper blowing devices of oxygen converters in Ukraine: State, problems, development prospects, Sbornik nauchnykh trudov DGTU (tekhnicheskie nauki) (Transactions of DSTU (Technical Sciences)), Dneprodzerzhinsk: Dneprodzerzhinkii Gos. Tekh. Univ., 2005, pp. 22–32. Maksimov, P., Measuring probe for automatic determination of melting parameters in converter, Sovrem. Tekhnol. Avtom., 2007, no. 4, pp. 36–39. KolesnikovYu.A.BigeevV.A.SergeevD.S.Modeling of steelmaking in BOF based on physical, chemical and thermal processesIzv. Vyssh. Uchebn. Zaved. Chern. Metall.2017606987051:CAS:528:DC%2BC1MXhtFKntrzM10.17073/0368-0797-2017-9-698-705 DiazJ.FernándezF.J.SuárezI.Hot metal temperature prediction at basic-lined oxygen furnace (BOF) converter using IR thermometry and forecasting techniquesEnergies20191232351:CAS:528:DC%2BB3cXhslOksrY%3D10.3390/en12173235 Suvorov, S.A. and Kozlov, V.V., Nauchnye printsipy tekhnologii ogneuporov. Uchebnoe posobie (Scientific Principles of Refractory Technology: Textbook), St. Petersburg: Izd-vo St.-Peterbg. Gos. Tekhnol. Inst. (Tekh. Univ.), 2009. SarkarR.GuptaP.BasuS.BallalN.Dynamic modeling of LD converter steelmaking: Reaction modeling using Gibbs’ free energy minimizationMetall. Mater. Trans. B2015469619761:CAS:528:DC%2BC2MXlsVaktg%3D%3D10.1007/s11663-014-0245-2 De la CruzS.BarronM.A.MedinaD.Y.ReyesJ.Lance design for argon bubbling in molten steelWorld J. Eng. Technol.2020831732810.4236/wjet.2020.83025 Microsoft. C# Documentation. https://docs.microsoft.com/en-us/dotnet/csharp/. Cited May 1, 2022. LytvynyukY.CorusD.SchenkJ.LeobenM.HieblerM.SormannA.Thermodynamic and kinetic model of the converter steelmaking process. Part 1: The description of the BOF modelSteel Res. Int.2014855375431:CAS:528:DC%2BC3sXhslaqs7rN10.1002/srin.201300272 CaoL.WangYa.LiuQ.FengX.Physical and mathematical modeling of multiphase flows in a converterISIF Int.2018585735841:CAS:528:DC%2BC1cXhtlWmtb3J10.2355/isijinternational.ISIJINT-2017-680 GouH.IronsG.A.LuW.K.Mathematical modeling of postcombustion in a KOBM converterMetall. Trans. B19932417918810.1007/BF02657884 Dogan, N., Mathematical modelling of oxygen steelmaking, PhD Dissertation, Melbourne, Australia: Mathematics Discipline Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, 2011. DeringD.SwartzC.DoganN.Dynamic modeling and simulation of basic oxygen furnace (BOF) operationProcesses202084831:CAS:528:DC%2BB3cXhslSrt77E10.3390/pr8040483 Zborshchik, A.M., Teoreticheskie osnovy metallurgicheskogo proizvodstva. Konspekt lektsii (Theoretical Foundations of Metallurgical Production: Lecture Notes), Donetsk: Donetskii Nats. Tekh. Univ., 2008. Ruuska, J., Special measurements and control models for a basic oxygen furnace (BOF), PhD Dissertation, Oulu, Finland, 2012. http://cc.oulu.fi/~kamahei/y/ casr/vk/ruuska.pdf. Cited August 10, 2021 Computer simulator Sike. Steel smelting in a converter. https://publishernews.ru/PressRelease/PressReleaseShow.asp?id=528210. Cited August 10, 2021. DeringD.SwartzC.DoganN.A dynamic optimization framework for basic oxygen furnace operationChem. Eng. Sci.20212411166531:CAS:528:DC%2BB3MXhtVKlsL7P10.1016/j.ces.2021.116653 Yaroshenko, A.V., Sinel’nikov, V.A., Lavrov, A.S., and Kopylov, A.F., Praktika konverternogo proizvodstva stali (BOF Steelmaking Practice), Lipetsk: OAO NLMK, 2012. Kol’man, T. and Yandl, Kh., Comparative analysis of oxygen converters: Assessment of technical service and technological process, Chern. Met., 2014, no. 5, pp. 43–49. Kumari, V., Mathematical modelling of basic oxygen steel making process, Master’s Thesis, Rourkela, 2015. https://core.ac.uk/download/pdf/80148601.pdf. Cited May 1, 2022. Website of the OP-06 department of the PJSC Tyazhpromavtomatika. Automatic control system for converter electric drives. https://chao-tyazhpromavtomatika.uaprom.net/a94154-asu-elektroprivodami-konvertera.html. Cited August 10, 2021. Penz, F.M., Experimental research and mathematical modelling of the melting and dissolution behaviour of scrap in liquid hot metal, PhD Dissertation, Leoben, Austria: Montanuniversität Leoben, 2019. WuL.YangN.YouX.XingK.HuY.A temperature prediction model of converters based on gas analysisProcedia Earth Planet. Sci.2011214191:CAS:528:DC%2BC3MXhsFags7vN10.1016/j.proeps.2011.09.003 Dul’nev, G.N., Parfenov, V.G., and Sigalov, A.V., Primenenie EVM dlya resheniya zadach teploobmena (Computer Application for Solving Heat Transfer Problems), Moscow: Vysshaya Shkola, 1990. Jo, H., Hwang, H.J., Phan, D., Lee, Yu., and Jang, H., Endpoint temperature prediction model for LD converters using machine-learning techniques, Proc. 2019 IEEE 6th Int. Conf. on Industrial Engineering and Applications (ICIEA), Tokyo, 2019, IEEE, 2019, pp. 22–26. https://doi.org/10.1109/IEA.2019.8715073 Samarskii, A.A., Teoriya raznostnykh skhem (Theory of Difference Schemes), Moscow: Nauka, 1989. Rout, B.K., Modelling of dephosphorization in oxygen steelmaking, PhD Dissertation, Melbourne, Australia, 2018. https://researchbank.swinburne.edu.au/file/ 28bcd64e-5f32-45c7-8bef-ddf5063d95f5/1/bapin_rout_ thesis.pdf. Cited May 1, 2022. Odenthal, H.-J., Falkenreck, U., and Schlüter, J., CFD-simulation of multiphase melt flows in steelmaking converters, Proc. European Conf. on Computational Fluid Dynamics (ECCOMAS CFD 2006), Delft, Netherlands, 2006. BarronM.A.MedinaD.Y.HilerioI.CFD analysis of influence of slag viscosity on the splashing process in an oxygen steelmaking converterModel. Numer. Simul. Mater. Sci.20133909310.4236/mnsms.2013.33012 Chistyakova, T.B., Kudlai, V.A., and Novozhilova, I.V., Decision support system for the operation of refractory lining of steelmaking converters, Izv. St.-Peterbg. Gos. Tekhnol. Inst. (Tekh. Univ.), 2016, no. 37, pp. 60–66. Gherfi, S.K., Bendjama, H., Bouhouche, S., and Meradi, H., Neural model identification of metallurgical process in oxygen converter, Proc. 12th Int. Multidisciplinary Sci. GeoConf. of Modern Management of Mine Producing, Geology and Environmental Protection (SGEM 2012), Albena, 2012, vol. 1, pp. 683–690. http://toc.proceedings.com/19962webtoc.pdf. Cited May 1, 2022. Kruskopf, A., Multiphysical modeling approach for basic oxygen steelmaking process, PhD Dissertation, Helsinki, Finland, 2018. https://aaltodoc.aalto.fi/bitstream/handle/123456789/29573/isbn9789526077956.pdf? sequence=4&isAllowed=y. Cited October 8, 2021. Suvorov, S.A. and Kozlov, V.V., Ekspluatatsiya futerovok i konstruktsii, vypolnennykh iz ogneupornykh materialov (Operation of Linings and Structures Made of Refractory Materials), St. Petersburg: Izd-vo St.-Peterbg. Gos. Tekhnol. Inst. (Tekh. Univ.), 2011. Zhul’kovskii, O.A., Zhul’kovskaya, I.I., and Babenko, M.V., Features of mathematical modeling of combined heat transfer processes in technological systems, Mat. Model., 2016, no. 1, pp. 7–10. Hofinger, S., Hubmer, R., and Schutt, S., Steel Expert takes command—Optimized performance on BOF converter, Technical contribution to the 16th Automation and Industrial IT Seminar, Rio de Janeiro, 2012, pp. 408–420. https://doi.org/10.5151/2594-5335-22654 Brooks, G.A., Dogan, N., Alam, M., Naser, J., and Rhamdhani, M.A., Developments in the modelling of oxygen steelmaking, Univ. Wollongong Res. Online, 2011, pp. 1–15. https://ro.uow.edu.au/engpapers/1631. Cited October 8, 2021. GaoC.ShenM.WangL.ChuM.End-point static control of basic oxygen furnace (BOF) steelmaking based on wavelet transform weighted twin support vector regressionComplexity20192019740872510.1155/2019/7408725 FengK.YangL.SuB.FengW.WangL.An integration model for converter molten steel end temperature prediction based on Bayesian formulaSteel Res. Int.20229321004331:CAS:528:DC%2BB3MXitFCitrrF10.1002/srin.202100433 PanteikovS.P.Stages of improvement for welded structures with five-nozzle Yu.A. Kolesnikov (1527_CR10) 2017; 60 1527_CR13 1527_CR2 1527_CR1 1527_CR4 1527_CR3 1527_CR18 L. Cao (1527_CR8) 2018; 58 D. Dering (1527_CR12) 2021; 241 1527_CR14 1527_CR16 1527_CR6 S.P. Panteikov (1527_CR43) 2020; 50 1527_CR5 1527_CR7 1527_CR9 1527_CR45 1527_CR46 J. Diaz (1527_CR17) 2019; 12 H. Gou (1527_CR28) 1993; 24 1527_CR40 1527_CR41 1527_CR42 1527_CR47 1527_CR48 1527_CR49 N. Andersson (1527_CR32) 2013; 40 Y. Tang (1527_CR30) 2005; 29 1527_CR34 1527_CR31 1527_CR36 1527_CR37 1527_CR38 1527_CR39 R. Sarkar (1527_CR25) 2015; 46 D. Dering (1527_CR11) 2020; 8 S. De la Cruz (1527_CR44) 2020; 8 1527_CR21 1527_CR22 1527_CR23 1527_CR24 Y. Lytvynyuk (1527_CR33) 2014; 85 1527_CR20 1527_CR26 1527_CR27 K. Feng (1527_CR15) 2022; 93 L. Wu (1527_CR29) 2011; 2 C. Gao (1527_CR19) 2019; 2019 M.A. Barron (1527_CR35) 2013; 3 |
| References_xml | – reference: Zborshchik, A.M., Teoreticheskie osnovy metallurgicheskogo proizvodstva. Konspekt lektsii (Theoretical Foundations of Metallurgical Production: Lecture Notes), Donetsk: Donetskii Nats. Tekh. Univ., 2008. – reference: Samarskii, A.A., Teoriya raznostnykh skhem (Theory of Difference Schemes), Moscow: Nauka, 1989. – reference: Kabulova, E.G., Kosareva, I.N., Karpova, V.A., and Gridneva, G., Modeling of steel smelting in metallurgical production, Vestn. Nats. Tekh. Univ. Kharkovskii Politekh. Inst., 2015, no. 53, pp. 14–18. – reference: KolesnikovYu.A.BigeevV.A.SergeevD.S.Modeling of steelmaking in BOF based on physical, chemical and thermal processesIzv. Vyssh. Uchebn. Zaved. Chern. Metall.2017606987051:CAS:528:DC%2BC1MXhtFKntrzM10.17073/0368-0797-2017-9-698-705 – reference: PanteikovS.P.Stages of improvement for welded structures with five-nozzle lance heads in the converter shop of public joint stock company “Dneprovsky Metallurgical Combine”Steel Transl.20205075676110.3103/S0967091220110108 – reference: DeringD.SwartzC.DoganN.A dynamic optimization framework for basic oxygen furnace operationChem. Eng. Sci.20212411166531:CAS:528:DC%2BB3MXhtVKlsL7P10.1016/j.ces.2021.116653 – reference: DiazJ.FernándezF.J.SuárezI.Hot metal temperature prediction at basic-lined oxygen furnace (BOF) converter using IR thermometry and forecasting techniquesEnergies20191232351:CAS:528:DC%2BB3cXhslOksrY%3D10.3390/en12173235 – reference: Kumari, V., Mathematical modelling of basic oxygen steel making process, Master’s Thesis, Rourkela, 2015. https://core.ac.uk/download/pdf/80148601.pdf. Cited May 1, 2022. – reference: TangY.FabritiusT.HärkkiJ.Mathematical modeling of the argon oxygen decarburization converter exhaust gas system at the reduction stageAppl. Math. Modell.20052949751410.1016/j.apm.2004.09.011 – reference: Bigeev V.A., Kolesnikov Yu.A. Prediction of technological parameters of steel smelting in a converter using siderite, Teoriya i tekhnologiya metallurgicheskogo proizvodstva. Sbornik nauchnykh trudov (Theory and Technology of Metallurgical Production. Transactions), Kolokol’tsev, V.M., Ed., Magnitogorsk: Magnitogorskii Gos. Tekh. Univ. im. G.I. Nosova, 2011, vol. 11, pp. 30–36. – reference: BarronM.A.MedinaD.Y.HilerioI.CFD analysis of influence of slag viscosity on the splashing process in an oxygen steelmaking converterModel. Numer. Simul. Mater. Sci.20133909310.4236/mnsms.2013.33012 – reference: Maksimov, P., Measuring probe for automatic determination of melting parameters in converter, Sovrem. Tekhnol. Avtom., 2007, no. 4, pp. 36–39. – reference: CaoL.WangYa.LiuQ.FengX.Physical and mathematical modeling of multiphase flows in a converterISIF Int.2018585735841:CAS:528:DC%2BC1cXhtlWmtb3J10.2355/isijinternational.ISIJINT-2017-680 – reference: Brooks, G.A., Dogan, N., Alam, M., Naser, J., and Rhamdhani, M.A., Developments in the modelling of oxygen steelmaking, Univ. Wollongong Res. Online, 2011, pp. 1–15. https://ro.uow.edu.au/engpapers/1631. Cited October 8, 2021. – reference: De la CruzS.BarronM.A.MedinaD.Y.ReyesJ.Lance design for argon bubbling in molten steelWorld J. Eng. Technol.2020831732810.4236/wjet.2020.83025 – reference: Zhul’kovskii, O.A., Zhul’kovskaya, I.I., and Babenko, M.V., Features of mathematical modeling of combined heat transfer processes in technological systems, Mat. Model., 2016, no. 1, pp. 7–10. – reference: AnderssonN.TillianderA.JonssonL.T.I.JonssonP.Fundamental decarburisation model of AOD processIronmaking Steelmaking2013403903971:CAS:528:DC%2BC3sXpsFagtr8%3D10.1179/1743281212Y.0000000060 – reference: Odenthal, H.-J., Falkenreck, U., and Schlüter, J., CFD-simulation of multiphase melt flows in steelmaking converters, Proc. European Conf. on Computational Fluid Dynamics (ECCOMAS CFD 2006), Delft, Netherlands, 2006. – reference: DeringD.SwartzC.DoganN.Dynamic modeling and simulation of basic oxygen furnace (BOF) operationProcesses202084831:CAS:528:DC%2BB3cXhslSrt77E10.3390/pr8040483 – reference: Simulation models in training and training systems. https://bookaa.ru/matematicheskoe-modelirovanie/ modeli-imitatory-v-trenazherno-obuchayu.html. Cited August 10, 2021. – reference: METAL SPASE. Computer simulators and trainers. Software complexes. https://metalspace.ru/education-career/education/simulator/512-trenazhernyj-kompleks-kislorodno-konverternyj-protsess.html. Cited August 10, 2021. – reference: Litvinenko, E.F., Simkin, A.I., and Sokol, S.P., Operation of converter smelting control system in information-advising mode, Avtomatizatsiya i komp’yuternyie tekhnologii. Tezisy dokladov uchastnikov Mezhdunarodnoi nauchno-prakticheskoi konferentsii, posvyashchennoi 50-letiyu kafedry avtomatizatsii tekhnologicheskikh protsessov i proizvodstv (Automation and Computer Technologies. Abstracts of the Int. Sci. and Pract. Conf. Dedicated to the 50th Anniversary of the Chair of Automation of Technological Processes and Production), Mariupol: Priazovskii Gos. Tekh. Univ., 2012, p. 34. – reference: Ruuska, J., Special measurements and control models for a basic oxygen furnace (BOF), PhD Dissertation, Oulu, Finland, 2012. http://cc.oulu.fi/~kamahei/y/ casr/vk/ruuska.pdf. Cited August 10, 2021 – reference: Gherfi, S.K., Bendjama, H., Bouhouche, S., and Meradi, H., Neural model identification of metallurgical process in oxygen converter, Proc. 12th Int. Multidisciplinary Sci. GeoConf. of Modern Management of Mine Producing, Geology and Environmental Protection (SGEM 2012), Albena, 2012, vol. 1, pp. 683–690. http://toc.proceedings.com/19962webtoc.pdf. Cited May 1, 2022. – reference: Hofinger, S., Hubmer, R., and Schutt, S., Steel Expert takes command—Optimized performance on BOF converter, Technical contribution to the 16th Automation and Industrial IT Seminar, Rio de Janeiro, 2012, pp. 408–420. https://doi.org/10.5151/2594-5335-22654 – reference: GouH.IronsG.A.LuW.K.Mathematical modeling of postcombustion in a KOBM converterMetall. Trans. B19932417918810.1007/BF02657884 – reference: Chistyakova, T.B., Kudlai, V.A., and Novozhilova, I.V., Decision support system for the operation of refractory lining of steelmaking converters, Izv. St.-Peterbg. Gos. Tekhnol. Inst. (Tekh. Univ.), 2016, no. 37, pp. 60–66. – reference: Panteikov, S.P., Upper blowing devices of oxygen converters in Ukraine: State, problems, development prospects, Sbornik nauchnykh trudov DGTU (tekhnicheskie nauki) (Transactions of DSTU (Technical Sciences)), Dneprodzerzhinsk: Dneprodzerzhinkii Gos. Tekh. Univ., 2005, pp. 22–32. – reference: Website of the OP-06 department of the PJSC Tyazhpromavtomatika. Automatic control system for converter electric drives. https://chao-tyazhpromavtomatika.uaprom.net/a94154-asu-elektroprivodami-konvertera.html. Cited August 10, 2021. – reference: GaoC.ShenM.WangL.ChuM.End-point static control of basic oxygen furnace (BOF) steelmaking based on wavelet transform weighted twin support vector regressionComplexity20192019740872510.1155/2019/7408725 – reference: Computer simulator Sike. Steel smelting in a converter. https://publishernews.ru/PressRelease/PressReleaseShow.asp?id=528210. Cited August 10, 2021. – reference: Kruskopf, A., Multiphysical modeling approach for basic oxygen steelmaking process, PhD Dissertation, Helsinki, Finland, 2018. https://aaltodoc.aalto.fi/bitstream/handle/123456789/29573/isbn9789526077956.pdf? sequence=4&isAllowed=y. Cited October 8, 2021. – reference: FengK.YangL.SuB.FengW.WangL.An integration model for converter molten steel end temperature prediction based on Bayesian formulaSteel Res. Int.20229321004331:CAS:528:DC%2BB3MXitFCitrrF10.1002/srin.202100433 – reference: LytvynyukY.CorusD.SchenkJ.LeobenM.HieblerM.SormannA.Thermodynamic and kinetic model of the converter steelmaking process. Part 1: The description of the BOF modelSteel Res. Int.2014855375431:CAS:528:DC%2BC3sXhslaqs7rN10.1002/srin.201300272 – reference: Jo, H., Hwang, H.J., Phan, D., Lee, Yu., and Jang, H., Endpoint temperature prediction model for LD converters using machine-learning techniques, Proc. 2019 IEEE 6th Int. Conf. on Industrial Engineering and Applications (ICIEA), Tokyo, 2019, IEEE, 2019, pp. 22–26. https://doi.org/10.1109/IEA.2019.8715073 – reference: Yaroshenko, A.V., Sinel’nikov, V.A., Lavrov, A.S., and Kopylov, A.F., Praktika konverternogo proizvodstva stali (BOF Steelmaking Practice), Lipetsk: OAO NLMK, 2012. – reference: WuL.YangN.YouX.XingK.HuY.A temperature prediction model of converters based on gas analysisProcedia Earth Planet. Sci.2011214191:CAS:528:DC%2BC3MXhsFags7vN10.1016/j.proeps.2011.09.003 – reference: Rout, B.K., Modelling of dephosphorization in oxygen steelmaking, PhD Dissertation, Melbourne, Australia, 2018. https://researchbank.swinburne.edu.au/file/ 28bcd64e-5f32-45c7-8bef-ddf5063d95f5/1/bapin_rout_ thesis.pdf. Cited May 1, 2022. – reference: SarkarR.GuptaP.BasuS.BallalN.Dynamic modeling of LD converter steelmaking: Reaction modeling using Gibbs’ free energy minimizationMetall. Mater. Trans. B2015469619761:CAS:528:DC%2BC2MXlsVaktg%3D%3D10.1007/s11663-014-0245-2 – reference: Penz, F.M., Experimental research and mathematical modelling of the melting and dissolution behaviour of scrap in liquid hot metal, PhD Dissertation, Leoben, Austria: Montanuniversität Leoben, 2019. – reference: Krivonosov, A., Krivolapov, A., Kaplunov, Yu., Pirozhenko, A., and Gurylev, E., Automatic control system of technological process of converter gas outlet, Sovrem. Tekhnol. Avtom., 2013, no. 4, pp. 42–46. – reference: Dogan, N., Mathematical modelling of oxygen steelmaking, PhD Dissertation, Melbourne, Australia: Mathematics Discipline Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, 2011. – reference: Microsoft. C# Documentation. https://docs.microsoft.com/en-us/dotnet/csharp/. Cited May 1, 2022. – reference: Suvorov, S.A. and Kozlov, V.V., Ekspluatatsiya futerovok i konstruktsii, vypolnennykh iz ogneupornykh materialov (Operation of Linings and Structures Made of Refractory Materials), St. Petersburg: Izd-vo St.-Peterbg. Gos. Tekhnol. Inst. (Tekh. Univ.), 2011. – reference: Suvorov, S.A. and Kozlov, V.V., Nauchnye printsipy tekhnologii ogneuporov. Uchebnoe posobie (Scientific Principles of Refractory Technology: Textbook), St. Petersburg: Izd-vo St.-Peterbg. Gos. Tekhnol. Inst. (Tekh. Univ.), 2009. – reference: Zhul’kovskii, O.A., Numerical study of operating temperature of top converter lance barrel, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 1998, no. 1, pp. 16–19. – reference: Kol’man, T. and Yandl, Kh., Comparative analysis of oxygen converters: Assessment of technical service and technological process, Chern. Met., 2014, no. 5, pp. 43–49. – reference: Morozov, A.A., Shelukhin, S.A., and Khrapko, S.A., Mathematical model of metal blowing with oxygen in a converter, Azovstal’-98. Tezisy dokladov nauchno-tekhnicheskoi konferentsii molodykh spetsialistov (Azovstal-98: Abstracts of the Sci. and Tech. Conf. of Young Specialists), Mariupol, 1998, pp. 23–24. – reference: Dul’nev, G.N., Parfenov, V.G., and Sigalov, A.V., Primenenie EVM dlya resheniya zadach teploobmena (Computer Application for Solving Heat Transfer Problems), Moscow: Vysshaya Shkola, 1990. – ident: 1527_CR1 – volume: 60 start-page: 698 year: 2017 ident: 1527_CR10 publication-title: Izv. Vyssh. Uchebn. Zaved. Chern. Metall. doi: 10.17073/0368-0797-2017-9-698-705 – ident: 1527_CR40 – ident: 1527_CR48 – volume: 24 start-page: 179 year: 1993 ident: 1527_CR28 publication-title: Metall. Trans. B doi: 10.1007/BF02657884 – ident: 1527_CR38 – volume: 12 start-page: 3235 year: 2019 ident: 1527_CR17 publication-title: Energies doi: 10.3390/en12173235 – ident: 1527_CR4 – volume: 29 start-page: 497 year: 2005 ident: 1527_CR30 publication-title: Appl. Math. Modell. doi: 10.1016/j.apm.2004.09.011 – ident: 1527_CR34 – ident: 1527_CR2 – volume: 50 start-page: 756 year: 2020 ident: 1527_CR43 publication-title: Steel Transl. doi: 10.3103/S0967091220110108 – ident: 1527_CR27 – ident: 1527_CR24 doi: 10.1109/IEA.2019.8715073 – ident: 1527_CR23 – ident: 1527_CR47 – ident: 1527_CR5 – volume: 46 start-page: 961 year: 2015 ident: 1527_CR25 publication-title: Metall. Mater. Trans. B doi: 10.1007/s11663-014-0245-2 – ident: 1527_CR37 – volume: 8 start-page: 317 year: 2020 ident: 1527_CR44 publication-title: World J. Eng. Technol. doi: 10.4236/wjet.2020.83025 – ident: 1527_CR9 – ident: 1527_CR16 – ident: 1527_CR49 – ident: 1527_CR26 – ident: 1527_CR42 – volume: 2019 start-page: 7408725 year: 2019 ident: 1527_CR19 publication-title: Complexity doi: 10.1155/2019/7408725 – ident: 1527_CR22 – ident: 1527_CR46 – volume: 3 start-page: 90 year: 2013 ident: 1527_CR35 publication-title: Model. Numer. Simul. Mater. Sci. doi: 10.4236/mnsms.2013.33012 – volume: 85 start-page: 537 year: 2014 ident: 1527_CR33 publication-title: Steel Res. Int. doi: 10.1002/srin.201300272 – ident: 1527_CR6 – volume: 8 start-page: 483 year: 2020 ident: 1527_CR11 publication-title: Processes doi: 10.3390/pr8040483 – ident: 1527_CR13 – volume: 40 start-page: 390 year: 2013 ident: 1527_CR32 publication-title: Ironmaking Steelmaking doi: 10.1179/1743281212Y.0000000060 – ident: 1527_CR36 – ident: 1527_CR20 doi: 10.5151/2594-5335-22654 – volume: 241 start-page: 116653 year: 2021 ident: 1527_CR12 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2021.116653 – volume: 93 start-page: 2100433 year: 2022 ident: 1527_CR15 publication-title: Steel Res. Int. doi: 10.1002/srin.202100433 – volume: 2 start-page: 14 year: 2011 ident: 1527_CR29 publication-title: Procedia Earth Planet. Sci. doi: 10.1016/j.proeps.2011.09.003 – ident: 1527_CR41 – ident: 1527_CR21 – ident: 1527_CR45 – ident: 1527_CR39 – volume: 58 start-page: 573 year: 2018 ident: 1527_CR8 publication-title: ISIF Int. doi: 10.2355/isijinternational.ISIJINT-2017-680 – ident: 1527_CR3 – ident: 1527_CR18 – ident: 1527_CR31 – ident: 1527_CR7 – ident: 1527_CR14 |
| SSID | ssj0056251 |
| Score | 2.2239218 |
| Snippet | —On the basis of mathematical modeling and object-oriented programming, a computer information-modeling forecasting system (IMFS) for thermal mode of top lance... Abstract—On the basis of mathematical modeling and object-oriented programming, a computer information-modeling forecasting system (IMFS) for thermal mode of... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 495 |
| SubjectTerms | Approximation Blowing Boundary conditions Chemistry and Materials Science Conduction heating Conductive heat transfer Cooling systems Cylindrical coordinates Design parameters Differential equations Finite difference method Forecasting Interpolation Materials Science Mathematical models Object oriented programming Object-oriented languages Oxygen lances Service life Temperature distribution Visual programming languages |
| Title | Information-Modeling Forecasting System for Thermal Mode of Top Converter Lance |
| URI | https://link.springer.com/article/10.3103/S0967091222050138 https://www.proquest.com/docview/2719005231 |
| Volume | 52 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1935-0988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056251 issn: 0967-0912 databaseCode: RSV dateStart: 20070101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1B4QAHdkTZ5AMnkIVjt0l8RBUVp4JoQb1F3iIhVW3VFL4fj5NQdgnOebYSj-2ZySwP4EzLyMZRHNNUyTZtCcaosjyiOVNGxTa2QuaBbCLp9dLhUN5VddxFne1ehyTDTR38SiYu-97YTrx241gaivG1ZVjx2i5Fvob7_mN9_aJBH2jyPJoivAxlfj_FR2W0sDA_BUWDrulu_ustt2CjMi3JVbkXtmHJjXdg_V3DwV24raqPUBoUadCwGJ0gPadRBSZAk7KDOfEo4neQh44I4sgkJ4PJlHQwSR2zQEkont6Dh-71oHNDK0oFarwhl_rrJMp5bp0QzHFttU209gKSllmZiMQwboxx3HGrEpYLie4fR1pQ5ryrLLjYh8Z4MnYHQKT_SokDHVo1wqmWs5Fra63ylhNMN4HVa5uZqt840l6MMu934FplX9aqCedvQ6Zls43fwMe1wLLq3BUZT7yBg3-6oyZc1AJaPP5xssM_oY9gjWMVRMh7PIbGfPbsTmDVvMyfitlp2I6v88fVMQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BQQIO7Iiy-sAJFOHYaVIfUUVVRCmIFtRb5C0SUtVWTeH78WSh7BKc82wlHtszk1kewIkSvgn9MPTqUtS8gFPqScN8L6FSy9CEhoskI5uIOp16vy_uijrutMx2L0OS2U2d-ZWUn3edsR057cawNBTja_OwEDiFhQ3z77uP5fWLBn1Gk-fQHsLzUOb3U3xURjML81NQNNM1zbV_veU6rBamJbnI98IGzNnhJqy8azi4BbdF9RFKw0MaNCxGJ0jPqWWKCdAk72BOHIq4HeSgA4I4MkpIbzQmDUxSxyxQkhVPb8ND87LXaHkFpYKnnSFXd9eJn7DEWM6pZcooEynlBCQMNSLikaZMa22ZZUZGNOEC3T-GtKDUOleZM74DleFoaHeBCPeVAgdatGq4lYE1vq0pJZPAcqqqQMu1jXXRbxxpLwax8ztwreIva1WF07ch47zZxm_gg1JgcXHu0phFzsDBP91-Fc5KAc0e_zjZ3p_Qx7DU6t204_ZV53oflhlWRGQ5kAdQmU6e7SEs6pfpUzo5yrbmK_s02BU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEH7-J0ah58UsLSpGuXR5kORZmDTdlbSZMUhNGNbfr7zenFeQfxuV9Dm5Mm3-m5fACnsfRM4AUBbSrZoL5gjCrDPZowpVVgAiNkkolNhJ1OczCQ3ULndFpmu5chybymAbs0pbP62CT1zMdkot5zxDt0Jx3HMlGMtS3Cko959Oiu9x7LrRjJfSaZ59AU4XlY8_shPh5Mc7b5KUCanTvtjX8_8SasF5STXORrZAsWbLoNa-8aEe7AfVGVhFaiKI-GReoEZTu1mmJiNMk7mxOHIm5lOeiQII6MEtIfjUkLk9cxO5RkRdW78NC-6reuaSG1QLUjeE23zXgJT4wVglkem9iEcewMJw0zMhShZlxrbbnlRoUsERLdQo5yocw6F1pwsQeVdJTafSDSvaXEGy2yHWGVb41nG3GsEt8KFleBlfMc6aIPOcphDCPnj-BcRV_mqgpnb7eM8yYcv4FrpfGi4nucRjx0xAf_gHtVOC-NNb_842AHf0KfwEr3sh3d3XRuD2GVY6FElhpZg8ps8myPYFm_zJ6mk-Nslb4C99Lg-Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Information-Modeling+Forecasting+System+for+Thermal+Mode+of+Top+Converter+Lance&rft.jtitle=Steel+in+translation&rft.au=Zhul%E2%80%99kovskii%2C+O.+A.&rft.au=Panteikov%2C+S.+P.&rft.au=Zhul%E2%80%99kovskaya%2C+I.+I.&rft.date=2022-05-01&rft.issn=0967-0912&rft.eissn=1935-0988&rft.volume=52&rft.issue=5&rft.spage=495&rft.epage=502&rft_id=info:doi/10.3103%2FS0967091222050138&rft.externalDBID=n%2Fa&rft.externalDocID=10_3103_S0967091222050138 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0912&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0912&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0912&client=summon |