Solution of Quantum Mechanical Problems Using Finite Element Method and Parametric Basis Functions

New computational schemes, symbolic-numerical algorithms and programs implementing the high-accuracy finite element method (FEM) for the solution of quantum mechanical boundary-value problems (BVPs) are reviewed. The elliptic BVPs in 2D and 3D domains are solved using the multivariable FEM and Kanto...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Bulletin of the Russian Academy of Sciences. Physics Ročník 82; číslo 6; s. 654 - 660
Hlavní autori: Chuluunbaatar, O., Vinitsky, S. I., Gusev, A. A., Derbov, V. L., Krassovitskiy, P. M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Moscow Pleiades Publishing 01.06.2018
Springer Nature B.V
Predmet:
ISSN:1062-8738, 1934-9432
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:New computational schemes, symbolic-numerical algorithms and programs implementing the high-accuracy finite element method (FEM) for the solution of quantum mechanical boundary-value problems (BVPs) are reviewed. The elliptic BVPs in 2D and 3D domains are solved using the multivariable FEM and Kantorovich method using parametric basis functions. We demonstrate and compare the efficiency of the proposed calculation schemes, algorithms, and software by solving the benchmark BVPs that describe the scattering on a barrier and a well, the bound states of a helium atom, and the quadrupole vibration in a collective nuclear model.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1062-8738
1934-9432
DOI:10.3103/S1062873818060096