Evolutionary constrained optimization with hybrid constraint-handling technique
In constrained optimization evolutionary algorithms (COEAs), constraint-handling technique is used to balance the objective function and constraints, but how to achieve this balance is a very important problem. We found that the information of the population during the evolution process can reflect...
Uloženo v:
| Vydáno v: | Expert systems with applications Ročník 211; s. 118660 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.01.2023
|
| Témata: | |
| ISSN: | 0957-4174, 1873-6793 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In constrained optimization evolutionary algorithms (COEAs), constraint-handling technique is used to balance the objective function and constraints, but how to achieve this balance is a very important problem. We found that the information of the population during the evolution process can reflect the current situation of the population, whether the population are inside the feasible region (feasible situation), or are near the boundary of the feasible region (semi-feasible situation), or far away from the feasible region (infeasible situation). Therefore, corresponding constraint-handling method are designed according to the information of each situation—Hybrid Constraint-handling Technique (HCT). The information of the population evolution process is used by HCT to maintain the objective function and constraints balance, and combines the evolutionary algorithm and HCT to propose ECO-HCT to solve COPs. Meanwhile, in infeasible situation, an elite replacement strategy is proposed to help the population accumulate experience. In addition, a criterion for judging that the population falls into the local optimum in the infeasible region and a simple restart mechanism are designed. They can help the population jump out of the local optimum in the infeasible region and effectively improve the algorithm’s ability to solve complex COPs. The 24 constraint test functions from IEEE CEC2006, the 28 constraint test functions from IEEE CEC2017, and three constrained engineering design problems are used to verify the effectiveness and efficiency of the proposed ECO-HCT. Experimental results show that ECO-HCT has very competitive performance compared with other advanced methods.
•The hybrid constraint-handling technique (HCT) is proposed.•The elite replacement strategy is proposed.•Information of the population during the evolution process is used effectively.•The criterion for judging that the population falls into a local optimum is proposed.•The simple population restart mechanism is proposed. |
|---|---|
| AbstractList | In constrained optimization evolutionary algorithms (COEAs), constraint-handling technique is used to balance the objective function and constraints, but how to achieve this balance is a very important problem. We found that the information of the population during the evolution process can reflect the current situation of the population, whether the population are inside the feasible region (feasible situation), or are near the boundary of the feasible region (semi-feasible situation), or far away from the feasible region (infeasible situation). Therefore, corresponding constraint-handling method are designed according to the information of each situation—Hybrid Constraint-handling Technique (HCT). The information of the population evolution process is used by HCT to maintain the objective function and constraints balance, and combines the evolutionary algorithm and HCT to propose ECO-HCT to solve COPs. Meanwhile, in infeasible situation, an elite replacement strategy is proposed to help the population accumulate experience. In addition, a criterion for judging that the population falls into the local optimum in the infeasible region and a simple restart mechanism are designed. They can help the population jump out of the local optimum in the infeasible region and effectively improve the algorithm’s ability to solve complex COPs. The 24 constraint test functions from IEEE CEC2006, the 28 constraint test functions from IEEE CEC2017, and three constrained engineering design problems are used to verify the effectiveness and efficiency of the proposed ECO-HCT. Experimental results show that ECO-HCT has very competitive performance compared with other advanced methods.
•The hybrid constraint-handling technique (HCT) is proposed.•The elite replacement strategy is proposed.•Information of the population during the evolution process is used effectively.•The criterion for judging that the population falls into a local optimum is proposed.•The simple population restart mechanism is proposed. |
| ArticleNumber | 118660 |
| Author | Li, Wei Wu, Zhijian Xu, Zhenzhen Qian, Jiayao Dong, Xiaogang Peng, Hu |
| Author_xml | – sequence: 1 givenname: Hu orcidid: 0000-0003-3381-3246 surname: Peng fullname: Peng, Hu email: hu_peng@whu.edu.cn organization: School of Computer and Big Data Science, Jiujiang University, Jiujiang 332005, PR China – sequence: 2 givenname: Zhenzhen surname: Xu fullname: Xu, Zhenzhen email: xzz.xlh@aliyun.com organization: School of Computer and Big Data Science, Jiujiang University, Jiujiang 332005, PR China – sequence: 3 givenname: Jiayao surname: Qian fullname: Qian, Jiayao email: jiayao@fanrenkong.com organization: School of Computer and Big Data Science, Jiujiang University, Jiujiang 332005, PR China – sequence: 4 givenname: Xiaogang surname: Dong fullname: Dong, Xiaogang email: dxg110@aliyun.com organization: School of Computer and Big Data Science, Jiujiang University, Jiujiang 332005, PR China – sequence: 5 givenname: Wei orcidid: 0000-0001-8242-076X surname: Li fullname: Li, Wei email: liwei@jxust.edu.cn organization: School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China – sequence: 6 givenname: Zhijian surname: Wu fullname: Wu, Zhijian email: zhijianwu@whu.edu.cn organization: School of Computer Science, Wuhan University, Wuhan 430072, PR China |
| BookMark | eNp9kMtKAzEUQINUsK3-gKv5gRnz6ExScCOlPqDQja5DJrnjpEyTmqSV-vXOWEFw0dVd3HsunDNBI-cdIHRLcEEwqe42BcRPVVBMaUGIqCp8gcZEcJZXfM5GaIznJc9nhM-u0CTGDcaEY8zHaL08-G6frHcqHDPtXUxBWQcm87tkt_ZLDbvs06Y2a491sObvKOWtcqaz7j1LoFtnP_ZwjS4b1UW4-Z1T9Pa4fF0856v108viYZVrynDKFdBZxWrOjAJWl2AUVlALMILxhvLKlKAY14KLmpEGq7qsNdOqvy4ZJkDZFNHTXx18jAEauQt22ztIguWQRG7kkEQOSeQpSQ-Jf5C26Udw8OnOo_cnFHqpg4Ugo7bgNBgbQCdpvD2HfwPP24J9 |
| CitedBy_id | crossref_primary_10_1007_s10586_024_04698_8 crossref_primary_10_1109_TSMC_2023_3343778 crossref_primary_10_1016_j_eswa_2024_125610 crossref_primary_10_1007_s11071_025_11366_y crossref_primary_10_1016_j_neucom_2025_131267 crossref_primary_10_1016_j_eswa_2024_123904 crossref_primary_10_1016_j_engappai_2024_109298 crossref_primary_10_1007_s11432_023_3963_7 crossref_primary_10_1016_j_eswa_2023_122119 crossref_primary_10_1016_j_asoc_2023_110479 crossref_primary_10_1016_j_asoc_2025_112900 crossref_primary_10_1016_j_swevo_2024_101621 crossref_primary_10_1016_j_eswa_2023_120298 crossref_primary_10_1016_j_eswa_2023_121563 crossref_primary_10_1109_TSMC_2024_3489600 crossref_primary_10_1016_j_eswa_2023_120530 crossref_primary_10_1016_j_ins_2024_121863 crossref_primary_10_1016_j_ins_2024_121536 crossref_primary_10_1016_j_swevo_2025_102006 crossref_primary_10_1016_j_ins_2025_121943 crossref_primary_10_1109_TAI_2024_3391230 crossref_primary_10_3390_drones8070316 crossref_primary_10_1109_JAS_2023_124116 |
| Cites_doi | 10.1016/j.asoc.2012.05.013 10.1080/03052150701364022 10.1016/j.eswa.2013.07.067 10.1109/TCYB.2014.2334692 10.1109/TSMCB.2011.2161467 10.1162/EVCO_a_00024 10.1162/evco.1996.4.1.1 10.1504/IJHVS.2008.022252 10.1016/j.ins.2012.01.017 10.1007/s10589-014-9637-0 10.1016/j.ins.2013.03.002 10.1016/j.ins.2012.01.008 10.1108/EC-07-2014-0158 10.1016/j.swevo.2011.10.001 10.1002/nme.2451 10.1109/TEVC.2019.2904900 10.1016/j.amc.2006.07.105 10.1109/TEVC.2010.2093582 10.1023/A:1008202821328 10.1109/4235.585893 10.1109/TEVC.2003.814902 10.1016/j.asoc.2012.11.026 10.1109/TCYB.2020.3031642 10.1109/TEVC.2007.902851 10.1016/j.ins.2019.06.030 10.1109/TSMC.2017.2682264 10.1109/TEVC.2013.2281528 10.1016/S0045-7825(99)00389-8 10.1016/j.compstruc.2016.03.001 10.1016/j.amc.2013.07.068 10.1109/TEVC.2005.846817 10.1109/TSMC.2016.2598685 10.1007/s00158-009-0454-5 10.1016/j.ins.2008.02.014 10.1109/TSMCA.2009.2013333 10.1016/j.cma.2013.10.019 10.1016/j.amc.2006.07.134 10.1016/j.ejor.2004.08.043 10.1007/s00500-017-2603-x 10.1109/TCYB.2015.2493239 10.1016/j.eswa.2012.12.045 10.1109/TSMCB.2006.886164 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.eswa.2022.118660 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2022_118660 S0957417422017006 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABFNM ABKBG ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNNM ACNTT ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c230t-ae2463b73dae3b5eda0aeb8ed837f276d5ea37c878b31f0ab5bc3cadae5301e23 |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000871006100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Tue Nov 18 22:12:49 EST 2025 Sat Nov 29 07:10:31 EST 2025 Fri Feb 23 02:39:25 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Differential evolution Restart mechanism Evolutionary constrained optimization Hybrid constraint-handling technique |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c230t-ae2463b73dae3b5eda0aeb8ed837f276d5ea37c878b31f0ab5bc3cadae5301e23 |
| ORCID | 0000-0003-3381-3246 0000-0001-8242-076X |
| ParticipantIDs | crossref_primary_10_1016_j_eswa_2022_118660 crossref_citationtrail_10_1016_j_eswa_2022_118660 elsevier_sciencedirect_doi_10_1016_j_eswa_2022_118660 |
| PublicationCentury | 2000 |
| PublicationDate | January 2023 2023-01-00 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Mezura-Montes, Coello (b29) 2011; 1 Wang, Cai, Zhou (b50) 2009; 77 Wang, Cai (b47) 2011; 42 Datta, Deb (b5) 2012 Trivedi, Sanyal, Verma, Srinivasan (b43) 2017 Hamida, Schoenauer (b15) 2002 Wang, Li, Xue, Wang (b53) 2019; 24 Wang, Wang, Li, Yen (b54) 2016; 46 Huang, Wang, He (b18) 2007; 186 Wang, Cai (b48) 2012; 16 Hernandez, Leguizamón, Mezura-Montes (b17) 2013; 16 Gong, Cai, Liang (b13) 2014; 45 Coello Coello (b3) 2022 Lemonge, Barbosa, Bernardino (b25) 2015; 32 Mezura-Montes, Coello Coello, Velázquez-Reyes, Muñoz-Dávila (b30) 2007; 39 Datta, Deb (b6) 2013 Jia, Chen, Gu, Zhang, Yuan, Lin, Yu, Zhang (b19) 2017; 48 Li, Zhang, Tian, Shao, Li (b26) 2016; 48 Mohamed, Sabry (b33) 2012; 194 He, Wang (b16) 2007; 186 Elsayed, Sarker, Essam (b12) 2012; 12 Chong, Koh, Tiong, Yeap (b2) 2011; 2 De Melo, Carosio (b8) 2013; 40 Jiao, Zeng, Li, Yang, Ong (b23) 2020; 51 Tessema, Yen (b42) 2009; 39 Tvrdík, Poláková (b44) 2017; 143 Polakova (b36) 2017 Cuevas, Cienfuegos (b4) 2014; 41 Kukkonen, Lampinen (b24) 2006 Onwubolu, Davendra (b34) 2006; 171 Wang, Cai (b46) 2011; 19 Ray, Liew (b37) 2003; 7 Peng, Liu, Gu (b35) 2018; 22 Jiao, Zeng, Li (b22) 2019; 502 Mani, Patvardhan (b28) 2009 Storn, Price (b40) 1997; 11 Jiao, Li, Shang, Liu, Stolkin (b21) 2013; 239 Sadollah, Bahreininejad, Eskandar, Hamdi (b38) 2013; 13 Wang, Cai, Zhou, Zeng (b51) 2008; 12 Wang, Cai, Guo, Zhou (b49) 2007; 37 Wang, Li (b52) 2010; 41 Jia, Wang, Cai, Jin (b20) 2013; 222 Tasgetiren, Suganthan (b41) 2006 Michalewicz, Schoenauer (b32) 1996; 4 Wolpert, Macready (b55) 1997; 1 Zamuda (b57) 2017 Zeng, Jiao, Li, Li, Alkasassbeh (b58) 2017; 47 Zhang, Luo, Wang (b59) 2008; 178 Datta, Deb, Segev (b7) 2017 Gong, Cai, Liang (b14) 2014; 268 Sarker, Elsayed, Ray (b39) 2013; 18 Elsayed, Sarker, Essam (b11) 2012; 222 Deb (b9) 2000; 186 Dhadwal, Jung, Kim (b10) 2014; 58 Miao, Fadel, Gantovnik (b31) 2008; 15 Wu, Mallipeddi, Suganthan (b56) 2017 Askarzadeh (b1) 2016; 169 Liang, Runarsson, Mezura-Montes, Clerc, Suganthan, Coello, Deb (b27) 2006; 41 Venkatraman, Yen (b45) 2005; 9 Datta (10.1016/j.eswa.2022.118660_b5) 2012 Sadollah (10.1016/j.eswa.2022.118660_b38) 2013; 13 Dhadwal (10.1016/j.eswa.2022.118660_b10) 2014; 58 Liang (10.1016/j.eswa.2022.118660_b27) 2006; 41 Zeng (10.1016/j.eswa.2022.118660_b58) 2017; 47 Kukkonen (10.1016/j.eswa.2022.118660_b24) 2006 Onwubolu (10.1016/j.eswa.2022.118660_b34) 2006; 171 Askarzadeh (10.1016/j.eswa.2022.118660_b1) 2016; 169 Mohamed (10.1016/j.eswa.2022.118660_b33) 2012; 194 Lemonge (10.1016/j.eswa.2022.118660_b25) 2015; 32 Miao (10.1016/j.eswa.2022.118660_b31) 2008; 15 Tessema (10.1016/j.eswa.2022.118660_b42) 2009; 39 Wolpert (10.1016/j.eswa.2022.118660_b55) 1997; 1 Tvrdík (10.1016/j.eswa.2022.118660_b44) 2017; 143 Wu (10.1016/j.eswa.2022.118660_b56) 2017 Polakova (10.1016/j.eswa.2022.118660_b36) 2017 Elsayed (10.1016/j.eswa.2022.118660_b12) 2012; 12 Wang (10.1016/j.eswa.2022.118660_b54) 2016; 46 He (10.1016/j.eswa.2022.118660_b16) 2007; 186 Hernandez (10.1016/j.eswa.2022.118660_b17) 2013; 16 Tasgetiren (10.1016/j.eswa.2022.118660_b41) 2006 Wang (10.1016/j.eswa.2022.118660_b46) 2011; 19 Michalewicz (10.1016/j.eswa.2022.118660_b32) 1996; 4 Cuevas (10.1016/j.eswa.2022.118660_b4) 2014; 41 Coello Coello (10.1016/j.eswa.2022.118660_b3) 2022 Mani (10.1016/j.eswa.2022.118660_b28) 2009 Sarker (10.1016/j.eswa.2022.118660_b39) 2013; 18 Chong (10.1016/j.eswa.2022.118660_b2) 2011; 2 Wang (10.1016/j.eswa.2022.118660_b50) 2009; 77 Hamida (10.1016/j.eswa.2022.118660_b15) 2002 Elsayed (10.1016/j.eswa.2022.118660_b11) 2012; 222 Datta (10.1016/j.eswa.2022.118660_b6) 2013 Storn (10.1016/j.eswa.2022.118660_b40) 1997; 11 Wang (10.1016/j.eswa.2022.118660_b47) 2011; 42 Ray (10.1016/j.eswa.2022.118660_b37) 2003; 7 Zamuda (10.1016/j.eswa.2022.118660_b57) 2017 Huang (10.1016/j.eswa.2022.118660_b18) 2007; 186 Datta (10.1016/j.eswa.2022.118660_b7) 2017 Li (10.1016/j.eswa.2022.118660_b26) 2016; 48 Wang (10.1016/j.eswa.2022.118660_b48) 2012; 16 Jiao (10.1016/j.eswa.2022.118660_b22) 2019; 502 De Melo (10.1016/j.eswa.2022.118660_b8) 2013; 40 Mezura-Montes (10.1016/j.eswa.2022.118660_b30) 2007; 39 Jia (10.1016/j.eswa.2022.118660_b20) 2013; 222 Gong (10.1016/j.eswa.2022.118660_b14) 2014; 268 Jia (10.1016/j.eswa.2022.118660_b19) 2017; 48 Wang (10.1016/j.eswa.2022.118660_b51) 2008; 12 Trivedi (10.1016/j.eswa.2022.118660_b43) 2017 Wang (10.1016/j.eswa.2022.118660_b53) 2019; 24 Wang (10.1016/j.eswa.2022.118660_b49) 2007; 37 Peng (10.1016/j.eswa.2022.118660_b35) 2018; 22 Gong (10.1016/j.eswa.2022.118660_b13) 2014; 45 Deb (10.1016/j.eswa.2022.118660_b9) 2000; 186 Mezura-Montes (10.1016/j.eswa.2022.118660_b29) 2011; 1 Wang (10.1016/j.eswa.2022.118660_b52) 2010; 41 Jiao (10.1016/j.eswa.2022.118660_b23) 2020; 51 Jiao (10.1016/j.eswa.2022.118660_b21) 2013; 239 Zhang (10.1016/j.eswa.2022.118660_b59) 2008; 178 Venkatraman (10.1016/j.eswa.2022.118660_b45) 2005; 9 |
| References_xml | – volume: 58 start-page: 781 year: 2014 end-page: 806 ident: b10 article-title: Advanced particle swarm assisted genetic algorithm for constrained optimization problems publication-title: Computational Optimization and Applications – start-page: 1 year: 2012 end-page: 8 ident: b5 article-title: An adaptive normalization based constrained handling methodology with hybrid biobjective and penalty function approach publication-title: Proceedings of the 2012 IEEE congress on evolutionary computation – volume: 22 start-page: 3919 year: 2018 end-page: 3935 ident: b35 article-title: A novel constrainthandling technique based on dynamic weights for constrained optimization problems publication-title: Soft Computing – volume: 45 start-page: 716 year: 2014 end-page: 727 ident: b13 article-title: Adaptive ranking mutation operator based differential evolution for constrained optimization publication-title: IEEE Transactions on Cybernetics – volume: 502 start-page: 201 year: 2019 end-page: 217 ident: b22 article-title: A feasible-ratio control technique for constrained optimization publication-title: Information Sciences – volume: 37 start-page: 560 year: 2007 end-page: 575 ident: b49 article-title: Multiobjective optimization and hybrid evolutionary algorithm to solve constrained optimization problems publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) – volume: 51 start-page: 4834 year: 2020 end-page: 4847 ident: b23 article-title: Handling constrained many-objective optimization problems via problem transformation publication-title: IEEE Transactions on Cybernetics – volume: 19 start-page: 249 year: 2011 end-page: 285 ident: b46 article-title: Constrained evolutionary optimization by means of ( publication-title: Evolutionary Computation – start-page: 2577 year: 2009 end-page: 2583 ident: b28 article-title: A novel hybrid constraint handling technique for evolutionary optimization publication-title: Proceedings of the 2009 IEEE congress on evolutionary computation – volume: 1 start-page: 173 year: 2011 end-page: 194 ident: b29 article-title: Constrainthandling in nature-inspired numerical optimization: Past, present and future publication-title: Swarm and Evolutionary Computation – volume: 24 start-page: 29 year: 2019 end-page: 43 ident: b53 article-title: Utilizing the correlation between constraints and objective function for constrained evolutionary optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 46 start-page: 2938 year: 2016 end-page: 2952 ident: b54 article-title: Incorporating objective function information into the feasibility rule for constrained evolutionary optimization publication-title: IEEE Transactions on Cybernetics – volume: 12 start-page: 3208 year: 2012 end-page: 3227 ident: b12 article-title: On an evolutionary approach for constrained optimization problem solving publication-title: Applied Soft Computing – volume: 13 start-page: 2592 year: 2013 end-page: 2612 ident: b38 article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems publication-title: Applied Soft Computing – year: 2017 ident: b56 article-title: Problem definitions and evaluation criteria for the cec 2017 competition on constrained real-parameter optimization – volume: 39 start-page: 565 year: 2009 end-page: 578 ident: b42 article-title: An adaptive penalty formulation for constrained evolutionary optimization publication-title: IEEE Transactions on Systems, Man, and CyberneticsPart A: Systems and Humans – volume: 239 start-page: 122 year: 2013 end-page: 141 ident: b21 article-title: A novel selection evolutionary strategy for constrained optimization publication-title: Information Sciences – volume: 4 start-page: 1 year: 1996 end-page: 32 ident: b32 article-title: Evolutionary algorithms for constrained parameter optimization problems publication-title: Evolutionary Computation – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b40 article-title: Differential evolution– A simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization – start-page: 1683 year: 2017 end-page: 1689 ident: b36 article-title: L-SHADE with competing strategies applied to constrained optimization publication-title: Proceedings of the 2017 IEEE congress on evolutionary computation – start-page: 207 year: 2006 end-page: 214 ident: b24 article-title: Constrained realparameter optimization with generalized differential evolution publication-title: Proceedings of the 2006 IEEE international conference on evolutionary computation – volume: 7 start-page: 386 year: 2003 end-page: 396 ident: b37 article-title: Society and civilization: An optimization algorithm based on the simulation of social behavior publication-title: IEEE Transactions on Evolutionary Computation – volume: 15 start-page: 433 year: 2008 end-page: 448 ident: b31 article-title: Vehicle configuration design with a packing genetic algorithm publication-title: International Journal of Heavy Vehicle Systems – volume: 32 start-page: 2182 year: 2015 end-page: 2215 ident: b25 article-title: Variants of an adaptive penalty scheme for steady-state genetic algorithms in engineering optimization publication-title: Engineering Computations – volume: 40 start-page: 3370 year: 2013 end-page: 3377 ident: b8 article-title: Investigating multi-view differential evolution for solving constrained engineering design problems publication-title: Expert Systems with Applications – volume: 9 start-page: 424 year: 2005 end-page: 435 ident: b45 article-title: A generic framework for constrained optimization using genetic algorithms publication-title: IEEE Transactions on Evolutionary Computation – volume: 48 start-page: 119 year: 2016 end-page: 129 ident: b26 article-title: Multiobjective program and hybrid imperialist competitive algorithm for the mixed-model two-sided assembly lines subject to multiple constraints publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – start-page: 33 year: 2006 end-page: 40 ident: b41 article-title: A multipopulated differential evolution algorithm for solving constrained optimization problem publication-title: Proceedings of the 2006 IEEE international conference on evolutionary computation – volume: 48 start-page: 1607 year: 2017 end-page: 1621 ident: b19 article-title: A dynamic logistic dispatching system with set-based particle swarm optimization publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – volume: 186 start-page: 1407 year: 2007 end-page: 1422 ident: b16 article-title: A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization publication-title: Applied Mathematics and Computation – start-page: 2443 year: 2017 end-page: 2450 ident: b57 article-title: Adaptive constraint handling and success history differential evolution for CEC 2017 constrained real-parameter optimization publication-title: Proceedings of the 2017 IEEE congress on evolutionary computation – start-page: 317 year: 2017 end-page: 324 ident: b7 article-title: A bi-objective hybrid constrained optimization (hycon) method using a multi-objective and penalty function approach publication-title: Proceedings of the 2017 IEEE congress on evolutionary computation – volume: 2 start-page: 1 year: 2011 end-page: 8 ident: b2 article-title: Design and development of automated digital circuit structure base on evolutionary algorithm method publication-title: International Journal of Electronics, Computer and Communications Technologies – volume: 47 start-page: 2678 year: 2017 end-page: 2688 ident: b58 article-title: A general framework of dynamic constrained multiobjective evolutionary algorithms for constrained optimization publication-title: IEEE Transactions on Cybernetics – volume: 268 start-page: 884 year: 2014 end-page: 904 ident: b14 article-title: Engineering optimization by means of an improved constrained differential evolution publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 41 start-page: 8 year: 2006 end-page: 31 ident: b27 article-title: Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization publication-title: Journal of Applied Mechanics – volume: 169 start-page: 1 year: 2016 end-page: 12 ident: b1 article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm publication-title: Computers and Structures – volume: 16 start-page: 3 year: 2013 end-page: 15 ident: b17 article-title: Hybridization of differential evolution using hill climbing to solve constrained optimization problems publication-title: Inteligencia Artificial. Revista Iberoamericana de Inteligencia Artificial – volume: 222 start-page: 302 year: 2013 end-page: 322 ident: b20 article-title: An improved ( publication-title: Information Sciences – volume: 186 start-page: 340 year: 2007 end-page: 356 ident: b18 article-title: An effective co-evolutionary differential evolution for constrained optimization publication-title: Applied Mathematics and Computation – volume: 12 start-page: 80 year: 2008 end-page: 92 ident: b51 article-title: An adaptive tradeoff model for constrained evolutionary optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 41 start-page: 412 year: 2014 end-page: 425 ident: b4 article-title: A new algorithm inspired in the behavior of the social-spider for constrained optimization publication-title: Expert Systems with Applications – volume: 77 start-page: 1501 year: 2009 end-page: 1534 ident: b50 article-title: Accelerating adaptive trade-off model using shrinking space technique for constrained evolutionary optimization publication-title: International Journal for Numerical Methods in Engineering – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: b55 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 18 start-page: 689 year: 2013 end-page: 707 ident: b39 article-title: Differential evolution with dynamic parameters selection for optimization problems publication-title: IEEE Transactions on Evolutionary Computation – volume: 42 start-page: 203 year: 2011 end-page: 217 ident: b47 article-title: A dynamic hybrid framework for constrained evolutionary optimization publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) – start-page: 1310 year: 2022 end-page: 1333 ident: b3 article-title: Constraint-handling techniques used with evolutionary algorithms publication-title: Proceedings of the genetic and evolutionary computation conference companion – start-page: 1231 year: 2017 end-page: 1238 ident: b43 article-title: A unified differential evolution algorithm for constrained optimization problems publication-title: Proceedings of the 2017 IEEE congress on evolutionary computation – volume: 222 start-page: 680 year: 2012 end-page: 711 ident: b11 article-title: Adaptive configuration of evolutionary algorithms for constrained optimization publication-title: Applied Mathematics and Computation – volume: 39 start-page: 567 year: 2007 end-page: 589 ident: b30 article-title: Multiple trial vectors in differential evolution for engineering design publication-title: Engineering Optimization – start-page: 2720 year: 2013 end-page: 2727 ident: b6 article-title: Individual penalty based constraint handling using a hybrid bi-objective and penalty function approach publication-title: Proceedings of the 2013 IEEE congress on evolutionary computation – volume: 171 start-page: 674 year: 2006 end-page: 692 ident: b34 article-title: Scheduling flow shops using differential evolution algorithm publication-title: European Journal of Operational Research – volume: 194 start-page: 171 year: 2012 end-page: 208 ident: b33 article-title: Constrained optimization based on modified differential evolution algorithm publication-title: Information Sciences – start-page: 884 year: 2002 end-page: 889 ident: b15 article-title: Aschea: New results using adaptive segregational constraint handling publication-title: Proceedings of the 2002 congress on evolutionary computation, Vol. 1 – volume: 41 start-page: 947 year: 2010 end-page: 963 ident: b52 article-title: An effective differential evolution with level comparison for constrained engineering design publication-title: Structural and Multidisciplinary Optimization – volume: 178 start-page: 3043 year: 2008 end-page: 3074 ident: b59 article-title: Differential evolution with dynamic stochastic selection for constrained optimization publication-title: Information Sciences – volume: 186 start-page: 311 year: 2000 end-page: 338 ident: b9 article-title: An efficient constraint handling method for genetic algorithms publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 16 start-page: 117 year: 2012 end-page: 134 ident: b48 article-title: Combining multiobjective optimization with differential evolution to solve constrained optimization problems publication-title: IEEE Transactions on Evolutionary Computation – volume: 143 start-page: 1436 year: 2017 end-page: 1443 ident: b44 article-title: A simple framework for constrained problems with application of L-SHADE44 and IDE publication-title: Proceedings of the 2017 IEEE congress on evolutionary computation – year: 2017 ident: 10.1016/j.eswa.2022.118660_b56 – volume: 12 start-page: 3208 issue: 10 year: 2012 ident: 10.1016/j.eswa.2022.118660_b12 article-title: On an evolutionary approach for constrained optimization problem solving publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2012.05.013 – volume: 39 start-page: 567 issue: 5 year: 2007 ident: 10.1016/j.eswa.2022.118660_b30 article-title: Multiple trial vectors in differential evolution for engineering design publication-title: Engineering Optimization doi: 10.1080/03052150701364022 – start-page: 33 year: 2006 ident: 10.1016/j.eswa.2022.118660_b41 article-title: A multipopulated differential evolution algorithm for solving constrained optimization problem – volume: 41 start-page: 412 issue: 2 year: 2014 ident: 10.1016/j.eswa.2022.118660_b4 article-title: A new algorithm inspired in the behavior of the social-spider for constrained optimization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.07.067 – volume: 45 start-page: 716 issue: 4 year: 2014 ident: 10.1016/j.eswa.2022.118660_b13 article-title: Adaptive ranking mutation operator based differential evolution for constrained optimization publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2014.2334692 – volume: 42 start-page: 203 issue: 1 year: 2011 ident: 10.1016/j.eswa.2022.118660_b47 article-title: A dynamic hybrid framework for constrained evolutionary optimization publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) doi: 10.1109/TSMCB.2011.2161467 – volume: 19 start-page: 249 issue: 2 year: 2011 ident: 10.1016/j.eswa.2022.118660_b46 article-title: Constrained evolutionary optimization by means of (μ+ λ)-differential evolution and improved adaptive trade-off model publication-title: Evolutionary Computation doi: 10.1162/EVCO_a_00024 – volume: 4 start-page: 1 issue: 1 year: 1996 ident: 10.1016/j.eswa.2022.118660_b32 article-title: Evolutionary algorithms for constrained parameter optimization problems publication-title: Evolutionary Computation doi: 10.1162/evco.1996.4.1.1 – volume: 15 start-page: 433 issue: 2–4 year: 2008 ident: 10.1016/j.eswa.2022.118660_b31 article-title: Vehicle configuration design with a packing genetic algorithm publication-title: International Journal of Heavy Vehicle Systems doi: 10.1504/IJHVS.2008.022252 – volume: 222 start-page: 302 year: 2013 ident: 10.1016/j.eswa.2022.118660_b20 article-title: An improved (μ+λ)-constrained differential evolution for constrained optimization publication-title: Information Sciences doi: 10.1016/j.ins.2012.01.017 – volume: 58 start-page: 781 issue: 3 year: 2014 ident: 10.1016/j.eswa.2022.118660_b10 article-title: Advanced particle swarm assisted genetic algorithm for constrained optimization problems publication-title: Computational Optimization and Applications doi: 10.1007/s10589-014-9637-0 – volume: 239 start-page: 122 year: 2013 ident: 10.1016/j.eswa.2022.118660_b21 article-title: A novel selection evolutionary strategy for constrained optimization publication-title: Information Sciences doi: 10.1016/j.ins.2013.03.002 – start-page: 2577 year: 2009 ident: 10.1016/j.eswa.2022.118660_b28 article-title: A novel hybrid constraint handling technique for evolutionary optimization – volume: 194 start-page: 171 year: 2012 ident: 10.1016/j.eswa.2022.118660_b33 article-title: Constrained optimization based on modified differential evolution algorithm publication-title: Information Sciences doi: 10.1016/j.ins.2012.01.008 – volume: 32 start-page: 2182 issue: 8 year: 2015 ident: 10.1016/j.eswa.2022.118660_b25 article-title: Variants of an adaptive penalty scheme for steady-state genetic algorithms in engineering optimization publication-title: Engineering Computations doi: 10.1108/EC-07-2014-0158 – volume: 2 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.eswa.2022.118660_b2 article-title: Design and development of automated digital circuit structure base on evolutionary algorithm method publication-title: International Journal of Electronics, Computer and Communications Technologies – volume: 1 start-page: 173 issue: 4 year: 2011 ident: 10.1016/j.eswa.2022.118660_b29 article-title: Constrainthandling in nature-inspired numerical optimization: Past, present and future publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2011.10.001 – volume: 77 start-page: 1501 issue: 11 year: 2009 ident: 10.1016/j.eswa.2022.118660_b50 article-title: Accelerating adaptive trade-off model using shrinking space technique for constrained evolutionary optimization publication-title: International Journal for Numerical Methods in Engineering doi: 10.1002/nme.2451 – volume: 41 start-page: 8 issue: 8 year: 2006 ident: 10.1016/j.eswa.2022.118660_b27 article-title: Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization publication-title: Journal of Applied Mechanics – volume: 24 start-page: 29 issue: 1 year: 2019 ident: 10.1016/j.eswa.2022.118660_b53 article-title: Utilizing the correlation between constraints and objective function for constrained evolutionary optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2019.2904900 – start-page: 1 year: 2012 ident: 10.1016/j.eswa.2022.118660_b5 article-title: An adaptive normalization based constrained handling methodology with hybrid biobjective and penalty function approach – volume: 143 start-page: 1436 year: 2017 ident: 10.1016/j.eswa.2022.118660_b44 article-title: A simple framework for constrained problems with application of L-SHADE44 and IDE – start-page: 1231 year: 2017 ident: 10.1016/j.eswa.2022.118660_b43 article-title: A unified differential evolution algorithm for constrained optimization problems – start-page: 2443 year: 2017 ident: 10.1016/j.eswa.2022.118660_b57 article-title: Adaptive constraint handling and success history differential evolution for CEC 2017 constrained real-parameter optimization – volume: 186 start-page: 340 issue: 1 year: 2007 ident: 10.1016/j.eswa.2022.118660_b18 article-title: An effective co-evolutionary differential evolution for constrained optimization publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2006.07.105 – volume: 16 start-page: 117 issue: 1 year: 2012 ident: 10.1016/j.eswa.2022.118660_b48 article-title: Combining multiobjective optimization with differential evolution to solve constrained optimization problems publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2010.2093582 – start-page: 884 year: 2002 ident: 10.1016/j.eswa.2022.118660_b15 article-title: Aschea: New results using adaptive segregational constraint handling – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/j.eswa.2022.118660_b40 article-title: Differential evolution– A simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization doi: 10.1023/A:1008202821328 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.eswa.2022.118660_b55 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.585893 – volume: 7 start-page: 386 issue: 4 year: 2003 ident: 10.1016/j.eswa.2022.118660_b37 article-title: Society and civilization: An optimization algorithm based on the simulation of social behavior publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2003.814902 – volume: 13 start-page: 2592 issue: 5 year: 2013 ident: 10.1016/j.eswa.2022.118660_b38 article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2012.11.026 – start-page: 207 year: 2006 ident: 10.1016/j.eswa.2022.118660_b24 article-title: Constrained realparameter optimization with generalized differential evolution – volume: 47 start-page: 2678 issue: 9 year: 2017 ident: 10.1016/j.eswa.2022.118660_b58 article-title: A general framework of dynamic constrained multiobjective evolutionary algorithms for constrained optimization publication-title: IEEE Transactions on Cybernetics – volume: 51 start-page: 4834 issue: 10 year: 2020 ident: 10.1016/j.eswa.2022.118660_b23 article-title: Handling constrained many-objective optimization problems via problem transformation publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2020.3031642 – volume: 12 start-page: 80 issue: 1 year: 2008 ident: 10.1016/j.eswa.2022.118660_b51 article-title: An adaptive tradeoff model for constrained evolutionary optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2007.902851 – volume: 502 start-page: 201 year: 2019 ident: 10.1016/j.eswa.2022.118660_b22 article-title: A feasible-ratio control technique for constrained optimization publication-title: Information Sciences doi: 10.1016/j.ins.2019.06.030 – volume: 48 start-page: 1607 issue: 9 year: 2017 ident: 10.1016/j.eswa.2022.118660_b19 article-title: A dynamic logistic dispatching system with set-based particle swarm optimization publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems doi: 10.1109/TSMC.2017.2682264 – start-page: 1310 year: 2022 ident: 10.1016/j.eswa.2022.118660_b3 article-title: Constraint-handling techniques used with evolutionary algorithms – volume: 18 start-page: 689 issue: 5 year: 2013 ident: 10.1016/j.eswa.2022.118660_b39 article-title: Differential evolution with dynamic parameters selection for optimization problems publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2013.2281528 – volume: 186 start-page: 311 issue: 2-4 year: 2000 ident: 10.1016/j.eswa.2022.118660_b9 article-title: An efficient constraint handling method for genetic algorithms publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/S0045-7825(99)00389-8 – volume: 169 start-page: 1 year: 2016 ident: 10.1016/j.eswa.2022.118660_b1 article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm publication-title: Computers and Structures doi: 10.1016/j.compstruc.2016.03.001 – volume: 222 start-page: 680 year: 2012 ident: 10.1016/j.eswa.2022.118660_b11 article-title: Adaptive configuration of evolutionary algorithms for constrained optimization publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2013.07.068 – volume: 9 start-page: 424 issue: 4 year: 2005 ident: 10.1016/j.eswa.2022.118660_b45 article-title: A generic framework for constrained optimization using genetic algorithms publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2005.846817 – volume: 48 start-page: 119 issue: 1 year: 2016 ident: 10.1016/j.eswa.2022.118660_b26 article-title: Multiobjective program and hybrid imperialist competitive algorithm for the mixed-model two-sided assembly lines subject to multiple constraints publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems doi: 10.1109/TSMC.2016.2598685 – volume: 41 start-page: 947 issue: 6 year: 2010 ident: 10.1016/j.eswa.2022.118660_b52 article-title: An effective differential evolution with level comparison for constrained engineering design publication-title: Structural and Multidisciplinary Optimization doi: 10.1007/s00158-009-0454-5 – start-page: 2720 year: 2013 ident: 10.1016/j.eswa.2022.118660_b6 article-title: Individual penalty based constraint handling using a hybrid bi-objective and penalty function approach – volume: 178 start-page: 3043 issue: 15 year: 2008 ident: 10.1016/j.eswa.2022.118660_b59 article-title: Differential evolution with dynamic stochastic selection for constrained optimization publication-title: Information Sciences doi: 10.1016/j.ins.2008.02.014 – start-page: 317 year: 2017 ident: 10.1016/j.eswa.2022.118660_b7 article-title: A bi-objective hybrid constrained optimization (hycon) method using a multi-objective and penalty function approach – start-page: 1683 year: 2017 ident: 10.1016/j.eswa.2022.118660_b36 article-title: L-SHADE with competing strategies applied to constrained optimization – volume: 39 start-page: 565 issue: 3 year: 2009 ident: 10.1016/j.eswa.2022.118660_b42 article-title: An adaptive penalty formulation for constrained evolutionary optimization publication-title: IEEE Transactions on Systems, Man, and CyberneticsPart A: Systems and Humans doi: 10.1109/TSMCA.2009.2013333 – volume: 268 start-page: 884 year: 2014 ident: 10.1016/j.eswa.2022.118660_b14 article-title: Engineering optimization by means of an improved constrained differential evolution publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2013.10.019 – volume: 186 start-page: 1407 issue: 2 year: 2007 ident: 10.1016/j.eswa.2022.118660_b16 article-title: A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2006.07.134 – volume: 16 start-page: 3 issue: 52 year: 2013 ident: 10.1016/j.eswa.2022.118660_b17 article-title: Hybridization of differential evolution using hill climbing to solve constrained optimization problems publication-title: Inteligencia Artificial. Revista Iberoamericana de Inteligencia Artificial – volume: 171 start-page: 674 issue: 2 year: 2006 ident: 10.1016/j.eswa.2022.118660_b34 article-title: Scheduling flow shops using differential evolution algorithm publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2004.08.043 – volume: 22 start-page: 3919 issue: 12 year: 2018 ident: 10.1016/j.eswa.2022.118660_b35 article-title: A novel constrainthandling technique based on dynamic weights for constrained optimization problems publication-title: Soft Computing doi: 10.1007/s00500-017-2603-x – volume: 46 start-page: 2938 issue: 12 year: 2016 ident: 10.1016/j.eswa.2022.118660_b54 article-title: Incorporating objective function information into the feasibility rule for constrained evolutionary optimization publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2015.2493239 – volume: 40 start-page: 3370 issue: 9 year: 2013 ident: 10.1016/j.eswa.2022.118660_b8 article-title: Investigating multi-view differential evolution for solving constrained engineering design problems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.12.045 – volume: 37 start-page: 560 issue: 3 year: 2007 ident: 10.1016/j.eswa.2022.118660_b49 article-title: Multiobjective optimization and hybrid evolutionary algorithm to solve constrained optimization problems publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) doi: 10.1109/TSMCB.2006.886164 |
| SSID | ssj0017007 |
| Score | 2.511402 |
| Snippet | In constrained optimization evolutionary algorithms (COEAs), constraint-handling technique is used to balance the objective function and constraints, but how... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 118660 |
| SubjectTerms | Differential evolution Evolutionary constrained optimization Hybrid constraint-handling technique Restart mechanism |
| Title | Evolutionary constrained optimization with hybrid constraint-handling technique |
| URI | https://dx.doi.org/10.1016/j.eswa.2022.118660 |
| Volume | 211 |
| WOSCitedRecordID | wos000871006100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELZa4NALUB7qAq186A0FOXYSJ0eEFlGEaCtRKbfIL9hFNLvazfL69dixnWTRsiqHXqLIcRwr82k8Hs98A8B3Y_ViZCRAIh4YRq6AEykDwVCWooQRhOpE4Qt6eZnmefbLHcVM63ICtCzTx8ds_F9Frdu0sE3q7DvE3QyqG_S9Frq-arHr6z8Jvn_vhjfxcMKYf6YKhLYrR1o7_HVpl9b_Ongy-VptpyqoSRfqDCrP7Trnuje8yJVjf_Z5cZ0T8FbPWg1yNvMt-aw-BRmo8nnQJp_9Hlr36_mQPbFRY1O7KOF8yEY3zK2szjGBSccx4T2MNIhCW4THK1vsVKtVl6Gh20MLNbl1KtweqemDoYfC-KjtPE-b_Wo5a4IMffzabWHGKMwYhR3jI1jFNM60Hl89_tHPz5tjJ4psfr2fucuysgGBr2ey2JLpWCdXm2DdbSvgsYXDZ_BBlVtgw5fsgE6Db4OfXXTADjpgFx3QSBZadMAF6IANOnbAn9P-1clZ4GpqBEJvNquAKRwlhFMimSI8VpIhpniqZEroNaaJjBUjVKQ05SS8RozHXBDBdO9YLwUKk12wUo5K9QXAUKYqMQ8SiaJIxQyFXEi9p8cZYmEU90Do_08hHOG8me5d8bZkeuCweWds6VaW9o79by-cwWgNwUKjaMl7e-_6yj741ML7AKxUk5n6CtbEfTWcTr45CL0AiHmQsw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+constrained+optimization+with+hybrid+constraint-handling+technique&rft.jtitle=Expert+systems+with+applications&rft.au=Peng%2C+Hu&rft.au=Xu%2C+Zhenzhen&rft.au=Qian%2C+Jiayao&rft.au=Dong%2C+Xiaogang&rft.date=2023-01-01&rft.issn=0957-4174&rft.volume=211&rft.spage=118660&rft_id=info:doi/10.1016%2Fj.eswa.2022.118660&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2022_118660 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |