A binary dandelion algorithm using seeding and chaos population strategies for feature selection
Feature selection (FS) is an important pre-processing step in data mining and pattern recognition. It can effectively compress the dimensionality of the feature space to reduce computation time and improve classification performance. The meta-heuristic algorithm-based feature selection method by fin...
Saved in:
| Published in: | Applied soft computing Vol. 125; p. 109166 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.08.2022
|
| Subjects: | |
| ISSN: | 1568-4946, 1872-9681 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Feature selection (FS) is an important pre-processing step in data mining and pattern recognition. It can effectively compress the dimensionality of the feature space to reduce computation time and improve classification performance. The meta-heuristic algorithm-based feature selection method by finding the optimal set of features in the solution space has been widely used. However, this method is prone to trap into local optimality in a sufficiently large solution space. In this paper, we first propose a binary dandelion algorithm (BDA) to improve classification accuracy. In addition, to improve the performance of the algorithm, a binary dandelion algorithm using an improved seeding strategy and chaotic populations (SBDA) is proposed in this paper. Firstly, the strategy of optimizing the seeding radius by using the vibrational function and the historical optimal population increases the complexity of the search process and improves the search performance of the algorithm in the solution space. Secondly, when generating seeds, chaotic populations are generated using chaotic operators, which improves the ability of the algorithm to jump out of the local optimum and improves the stability of the algorithm. In this paper, 15 well-established datasets collected from the UCI machine learning database were adopted to compare four variants of BDA using only chaotic population improvement and in the next experiments, both mechanisms are verified to be effective in improving the performance of the algorithm. In addition, this paper compares the proposed BDA algorithm and SBDA algorithm with eight other classical algorithms. The experimental results show that SBDA can obtain fewer features with higher classification accuracy in most cases.
•Proposed a BDA algorithm for solving binary problems.•Proposed a SBDA algorithm by incorporating chaos mapping.•Presented an improved seeding strategy in relation to the historical optimal population.•Studied and applied the feature selection problem with extreme learning machine. |
|---|---|
| AbstractList | Feature selection (FS) is an important pre-processing step in data mining and pattern recognition. It can effectively compress the dimensionality of the feature space to reduce computation time and improve classification performance. The meta-heuristic algorithm-based feature selection method by finding the optimal set of features in the solution space has been widely used. However, this method is prone to trap into local optimality in a sufficiently large solution space. In this paper, we first propose a binary dandelion algorithm (BDA) to improve classification accuracy. In addition, to improve the performance of the algorithm, a binary dandelion algorithm using an improved seeding strategy and chaotic populations (SBDA) is proposed in this paper. Firstly, the strategy of optimizing the seeding radius by using the vibrational function and the historical optimal population increases the complexity of the search process and improves the search performance of the algorithm in the solution space. Secondly, when generating seeds, chaotic populations are generated using chaotic operators, which improves the ability of the algorithm to jump out of the local optimum and improves the stability of the algorithm. In this paper, 15 well-established datasets collected from the UCI machine learning database were adopted to compare four variants of BDA using only chaotic population improvement and in the next experiments, both mechanisms are verified to be effective in improving the performance of the algorithm. In addition, this paper compares the proposed BDA algorithm and SBDA algorithm with eight other classical algorithms. The experimental results show that SBDA can obtain fewer features with higher classification accuracy in most cases.
•Proposed a BDA algorithm for solving binary problems.•Proposed a SBDA algorithm by incorporating chaos mapping.•Presented an improved seeding strategy in relation to the historical optimal population.•Studied and applied the feature selection problem with extreme learning machine. |
| ArticleNumber | 109166 |
| Author | Chen, Hui Li, Shaolang Zhao, Yuxin Dong, Junwei Li, Xiaobo |
| Author_xml | – sequence: 1 givenname: Yuxin orcidid: 0000-0002-7649-1788 surname: Zhao fullname: Zhao, Yuxin – sequence: 2 givenname: Junwei orcidid: 0000-0001-6597-0874 surname: Dong fullname: Dong, Junwei – sequence: 3 givenname: Xiaobo orcidid: 0000-0003-0607-5567 surname: Li fullname: Li, Xiaobo email: lxb@zjnu.edu.cn – sequence: 4 givenname: Hui orcidid: 0000-0003-2302-2416 surname: Chen fullname: Chen, Hui – sequence: 5 givenname: Shaolang orcidid: 0000-0002-2072-3148 surname: Li fullname: Li, Shaolang |
| BookMark | eNp9kMFKAzEQhoNUsK2-gKe8wNYkm6ZZ8FKKWqHgRc9xNjtpU7abkmwF396s9eShpxmG_xv4vwkZdaFDQu45m3HG1cN-BinYmWBC5EPFlboiY64XoqiU5qO8z5UuZCXVDZmktGcZqoQek88lrX0H8Zs20DXY-tBRaLch-n53oKfkuy1NiM0wc4DaHYREj-F4aqEfwqmP0OPWY6IuROoQ-lPEzLRoh8AtuXbQJrz7m1Py8fz0vloXm7eX19VyU1hRsr5QXDjmag2yBleVUErJpHUMAaAU1kmhS7Vg3NpG1lhryzh3Ts_njEMjoSmnRJz_2hhSiujMMfpDLmY4M4MjszeDIzM4MmdHGdL_IOv73165lW8vo49nFHOpL4_RJOuxs1lVzM1NE_wl_AfoP4cI |
| CitedBy_id | crossref_primary_10_1007_s11277_023_10578_y crossref_primary_10_1007_s13369_024_08861_6 crossref_primary_10_1038_s41598_024_77115_0 crossref_primary_10_3390_biomimetics9050298 crossref_primary_10_1016_j_eswa_2023_122390 crossref_primary_10_4018_IJSIR_349907 crossref_primary_10_1016_j_inffus_2024_102361 crossref_primary_10_1016_j_asoc_2025_113792 crossref_primary_10_3390_agriculture15101088 crossref_primary_10_1016_j_knosys_2025_113420 crossref_primary_10_32604_cmes_2025_058473 crossref_primary_10_1007_s13042_025_02721_x crossref_primary_10_1016_j_ins_2024_120483 crossref_primary_10_1016_j_knosys_2023_111191 crossref_primary_10_1016_j_knosys_2025_114119 crossref_primary_10_1016_j_swevo_2024_101743 crossref_primary_10_1007_s10462_022_10333_y crossref_primary_10_1016_j_compbiomed_2023_107020 crossref_primary_10_1109_JIOT_2023_3317089 crossref_primary_10_7717_peerj_cs_2084 |
| Cites_doi | 10.1109/TMM.2021.3065580 10.1016/j.ins.2020.08.083 10.1007/s00521-020-05297-5 10.1016/j.asoc.2018.10.028 10.1016/j.eswa.2020.114021 10.1109/ACCESS.2020.3024994 10.1109/ACCESS.2021.3079161 10.1109/TCYB.2016.2609408 10.1016/j.swevo.2012.09.002 10.1007/s10462-020-09867-w 10.1109/ACCESS.2021.3049922 10.1109/ACCESS.2020.2970208 10.1016/j.eswa.2008.01.053 10.1109/TSMC.2019.2956121 10.1109/TEVC.2007.896686 10.1016/j.asoc.2021.107302 10.1016/j.ins.2021.01.020 10.1007/s11042-018-5655-8 10.1016/j.asoc.2016.01.019 10.1016/j.ins.2019.08.040 10.1016/j.asoc.2015.07.023 10.1109/JSTARS.2017.2690943 10.1109/JAS.2020.1003462 10.1016/j.advengsoft.2016.01.008 10.1016/S0031-3203(99)00041-2 10.1016/j.ins.2020.03.032 10.1109/TEVC.2015.2504420 10.1016/j.ins.2020.08.081 10.1109/TCYB.2014.2307349 10.1007/s10489-018-1158-6 10.1049/iet-bmt.2018.5063 10.1016/j.imavis.2021.104112 10.1109/ACCESS.2020.3001947 10.1016/j.eswa.2019.06.007 10.1145/3459960.3459974 10.1016/j.ejor.2018.10.051 10.1016/j.neucom.2021.03.110 10.3390/electronics8101130 10.1007/s12065-020-00441-5 10.1016/j.ins.2021.03.016 10.1016/j.ejco.2020.100001 10.1155/2017/4523754 10.1007/s11071-012-0712-8 10.1109/ACCESS.2021.3049547 10.1016/j.csbj.2021.03.010 10.1142/S021812742150108X 10.1371/journal.pcbi.1009224 10.1109/ACCESS.2021.3093336 10.1007/s11227-020-03378-9 10.1109/TSMCB.2012.2228188 10.1109/ACCESS.2021.3061288 10.1016/j.enconman.2016.08.069 10.1016/j.knosys.2018.05.009 10.1016/j.knosys.2011.07.001 10.1109/TSMCC.2010.2054080 10.1007/s11042-018-6808-5 10.1109/ACCESS.2020.3027846 10.1109/ACCESS.2021.3052149 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. |
| Copyright_xml | – notice: 2022 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2022.109166 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| ExternalDocumentID | 10_1016_j_asoc_2022_109166 S1568494622004161 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c230t-612f0fb8a4baf93a34404cf0eaaa32cf42836701ccd4beb8c011ff85501ad4ad3 |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000861626300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Tue Nov 18 21:21:49 EST 2025 Sat Nov 29 07:02:17 EST 2025 Fri Feb 23 02:40:37 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Chaos algorithm Feature selection Seeding strategy Metaheuristic algorithm Dandelion algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c230t-612f0fb8a4baf93a34404cf0eaaa32cf42836701ccd4beb8c011ff85501ad4ad3 |
| ORCID | 0000-0003-2302-2416 0000-0003-0607-5567 0000-0002-7649-1788 0000-0001-6597-0874 0000-0002-2072-3148 |
| ParticipantIDs | crossref_primary_10_1016_j_asoc_2022_109166 crossref_citationtrail_10_1016_j_asoc_2022_109166 elsevier_sciencedirect_doi_10_1016_j_asoc_2022_109166 |
| PublicationCentury | 2000 |
| PublicationDate | August 2022 2022-08-00 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Chen, Wu, Wang (b60) 2021; 107 Kahavi, John (b30) 1997 Zhao, Bao, Ning, Ji, Zhao (b73) 2018; 37 Zhu, Tang (b16) 2021; 9 Li, He, Wang, Zhang (b27) 2019; 274 Ji, Rosset, Hastie, Tibshirani (b58) 2003; 16 Stanovov, Akhmedova, Semenkin (b3) 2021; 566 A.J. Annema, K. Hoen, H. Wallinga, Precision requirements for single-layer feedforward neural networks, in: Proceedings of the International Conference on Microelectronics for Neural Networks & Fuzzy Systems, 2002, F[C]. Almazini, Ku-Mahamud (b43) 2021; 14 Talatahari, Azizi (b71) 2020; 54 Duan, Gao, Gao, Hu, Xu, Huang, Song, Wang, Dong, Jiang (b66) 2021; 17 Yong, Dwg, Xzg, Tian, Xys (b42) 2020; 507 Huang, Song, Gupta, Wu (b51) 2017; 44 Zhang, Zheng, Bai, Zhou (b74) 2020; 8 Nguyen, Xue, Andreae, Zhang (b35) 2019 Zhou, Zhang, Kang, Zhang, Wang (b38) 2020; 547 Feng, Zhao, Liu (b10) 2020; 8 Talatahari, Azizi, Tolouei, Talatahari, Sareh (b1) 2021; 9 Khurshid, Maqsood, Omair, Sarkar, Muhammad (b13) 2021; 9 Wang, Gao, Zhou, Yu (b14) 2021; 8 Li, Xue, Zhang (b28) 2021; 106 Hancer, Xue, Karaboga, Zhang (b44) 2015; 36 Zhang, Gao, Pan, Li, Qiu (b62) 2020; 8 Mirjalili, Lewis (b12) 2016; 95 Sayed, Khoriba, Haggag (b70) 2018; 48 Hassouneh, Turabieh, Thaher, Tumar, Too (b78) 2021; 9 Rida, Almaadeed, Almaadeed (b63) 2019; 8 Khokhar, Dahiya, Parmar (b15) 2021 Shekhawat, Sharma, Kumar, Nayyar, Qureshi (b41) 2021; 9 Kumar, John (b34) 2021 Yu, Liu (b56) 2004; 5 Li (b65) 2022 Motsa, Dlamini, Khumalo (b69) 2013; 72 Kundu, Mitra (b54) 2016; 47 Maadeed, Jiang, Rida, Bouridane (b61) 2019; 78 Liu, Motoda, Setiono, Zheng (b55) 2010 Gao, Yu, Wang, Wang, Cheng, Zhou (b48) 2019; 51 Abbas (b68) 2020; 8 Jiang, Dong (b21) 2016; 126 Diouane (b5) 2021; 9 Too, Abdullah (b75) 2020; 14 Rida, Al-Maadeed, Al-Maadeed, Bakshi (b59) 2020; 79 Kiran (b9) 2021 Kudo, Sklansky (b20) 2000; 33 Han, Chen, Ling, Han (b32) 2021; 62 Chen, Wang, Han, Xiong, Wang, Ling (b46) 2017; 10 Zhao, Sinha, Wei (b53) 2009; 36 Kulkarni, Venayagamoorthy (b23) 2011; 41 Pan (b24) 2012; 26 Liu, Wang, Liu, Gandomi, Daneshmand, Muhammad, Albuquerque (b64) 2021; 23 Bing, Zhang, Browne, Xin (b22) 2016; 20 Bharti, Singh (b72) 2016; 43 Adl, Zhen (b57) 2020; 149 Wei, Ouyang, Zhang, Li, Gao (b8) 2021; 100 Qiao, Zhou, Yang, Yang (b33) 2018; 74 Zhao, Ding, Wang, Cao, Tang (b11) 2021; 183 Tahir, Tubaishat, Al-Obeidat, Shah, Waqas (b36) 2020 Mirjalili, Lewis (b47) 2013; 9 Guan, Zhao, Li (b7) 2021; 164 Faris, Mafarja, Heidari, Aljarah, Ala’m, Mirjalili, Fujita (b76) 2018; 154 Tao, Sang, Guo, Wang (b6) 2021; 9 G.B. Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: a new learning scheme of feedforward neural networks, in: Proceedings of the IEEE International Joint Conference on Neural Networks, 2005, F[C]. Ding, Zhou, Piao (b67) 2021; 31 Guha, Khan, Singh, Sarkar, Bhattacharjee (b37) 2020; 33 Adl, Bing, Mz (b39) 2020; 523 Li, Han, Liang, Gong, Liu (b45) 2017; 2017 Abdullah, Saad (b77) 2019; 8 Salesi, Cosma, Mavrocouniotis (b40) 2021; 565 Wei, Hao (b17) 2021; 105 Valle, Venayagamoorthy, Mohagheghi, Hernandez, Harley (b26) 2008; 12 Ouyang (b52) 2021; 448 Blum, Rivest (b29) 1993 Wu, Wang, Li, Cheng, Fang, Cao, Cui (b19) 2021; 19 Too, Abdullah (b79) 2020; 77 Guan, Zhao, Yin, Li (b81) 2021; 547 Lin, Guan, Li, Feng (b18) 2019; 135 Timea Bezdan, Dusan Cvetnic, Luka Gajic, Miodrag Zivkovic, Ivana Strumberger, Nebojsa Bacanin, Feature selection by firefly algorithm with improved initialization strategy, in: Proceedings of the 7th Conference on the Engineering of Computer Based Systems, 2021, F [C]. Ruiz-Cruz, Ornelas-Tellez, Sanchez, Harley, Loukianov (b25) 2013; 43 Esnaashari, Damia (b2) 2021 Bakurov, Castelli, Gau, Fontanella, Vanneschi (b4) 2021; 65 Kl, Kaya, Yildirim (b31) 2021; 219 Yu (10.1016/j.asoc.2022.109166_b56) 2004; 5 Kumar (10.1016/j.asoc.2022.109166_b34) 2021 Khurshid (10.1016/j.asoc.2022.109166_b13) 2021; 9 Kahavi (10.1016/j.asoc.2022.109166_b30) 1997 Shekhawat (10.1016/j.asoc.2022.109166_b41) 2021; 9 Hancer (10.1016/j.asoc.2022.109166_b44) 2015; 36 Chen (10.1016/j.asoc.2022.109166_b46) 2017; 10 Salesi (10.1016/j.asoc.2022.109166_b40) 2021; 565 Khokhar (10.1016/j.asoc.2022.109166_b15) 2021 Rida (10.1016/j.asoc.2022.109166_b59) 2020; 79 Adl (10.1016/j.asoc.2022.109166_b57) 2020; 149 Zhao (10.1016/j.asoc.2022.109166_b73) 2018; 37 Zhu (10.1016/j.asoc.2022.109166_b16) 2021; 9 Wu (10.1016/j.asoc.2022.109166_b19) 2021; 19 Talatahari (10.1016/j.asoc.2022.109166_b1) 2021; 9 Zhao (10.1016/j.asoc.2022.109166_b53) 2009; 36 Zhao (10.1016/j.asoc.2022.109166_b11) 2021; 183 Esnaashari (10.1016/j.asoc.2022.109166_b2) 2021 Gao (10.1016/j.asoc.2022.109166_b48) 2019; 51 Bing (10.1016/j.asoc.2022.109166_b22) 2016; 20 Blum (10.1016/j.asoc.2022.109166_b29) 1993 10.1016/j.asoc.2022.109166_b80 Bharti (10.1016/j.asoc.2022.109166_b72) 2016; 43 Li (10.1016/j.asoc.2022.109166_b45) 2017; 2017 Kudo (10.1016/j.asoc.2022.109166_b20) 2000; 33 Han (10.1016/j.asoc.2022.109166_b32) 2021; 62 Chen (10.1016/j.asoc.2022.109166_b60) 2021; 107 Yong (10.1016/j.asoc.2022.109166_b42) 2020; 507 Abdullah (10.1016/j.asoc.2022.109166_b77) 2019; 8 Liu (10.1016/j.asoc.2022.109166_b64) 2021; 23 Wei (10.1016/j.asoc.2022.109166_b8) 2021; 100 Tao (10.1016/j.asoc.2022.109166_b6) 2021; 9 Jiang (10.1016/j.asoc.2022.109166_b21) 2016; 126 Li (10.1016/j.asoc.2022.109166_b28) 2021; 106 Guha (10.1016/j.asoc.2022.109166_b37) 2020; 33 Li (10.1016/j.asoc.2022.109166_b27) 2019; 274 Maadeed (10.1016/j.asoc.2022.109166_b61) 2019; 78 Wang (10.1016/j.asoc.2022.109166_b14) 2021; 8 10.1016/j.asoc.2022.109166_b50 Talatahari (10.1016/j.asoc.2022.109166_b71) 2020; 54 Faris (10.1016/j.asoc.2022.109166_b76) 2018; 154 Li (10.1016/j.asoc.2022.109166_b65) 2022 Abbas (10.1016/j.asoc.2022.109166_b68) 2020; 8 Sayed (10.1016/j.asoc.2022.109166_b70) 2018; 48 Liu (10.1016/j.asoc.2022.109166_b55) 2010 Kl (10.1016/j.asoc.2022.109166_b31) 2021; 219 Valle (10.1016/j.asoc.2022.109166_b26) 2008; 12 Feng (10.1016/j.asoc.2022.109166_b10) 2020; 8 Qiao (10.1016/j.asoc.2022.109166_b33) 2018; 74 Ruiz-Cruz (10.1016/j.asoc.2022.109166_b25) 2013; 43 Nguyen (10.1016/j.asoc.2022.109166_b35) 2019 Guan (10.1016/j.asoc.2022.109166_b81) 2021; 547 Mirjalili (10.1016/j.asoc.2022.109166_b12) 2016; 95 Kulkarni (10.1016/j.asoc.2022.109166_b23) 2011; 41 Ouyang (10.1016/j.asoc.2022.109166_b52) 2021; 448 Kundu (10.1016/j.asoc.2022.109166_b54) 2016; 47 Huang (10.1016/j.asoc.2022.109166_b51) 2017; 44 Too (10.1016/j.asoc.2022.109166_b79) 2020; 77 Stanovov (10.1016/j.asoc.2022.109166_b3) 2021; 566 10.1016/j.asoc.2022.109166_b49 Ji (10.1016/j.asoc.2022.109166_b58) 2003; 16 Wei (10.1016/j.asoc.2022.109166_b17) 2021; 105 Pan (10.1016/j.asoc.2022.109166_b24) 2012; 26 Bakurov (10.1016/j.asoc.2022.109166_b4) 2021; 65 Almazini (10.1016/j.asoc.2022.109166_b43) 2021; 14 Zhang (10.1016/j.asoc.2022.109166_b62) 2020; 8 Too (10.1016/j.asoc.2022.109166_b75) 2020; 14 Zhang (10.1016/j.asoc.2022.109166_b74) 2020; 8 Duan (10.1016/j.asoc.2022.109166_b66) 2021; 17 Guan (10.1016/j.asoc.2022.109166_b7) 2021; 164 Kiran (10.1016/j.asoc.2022.109166_b9) 2021 Tahir (10.1016/j.asoc.2022.109166_b36) 2020 Mirjalili (10.1016/j.asoc.2022.109166_b47) 2013; 9 Lin (10.1016/j.asoc.2022.109166_b18) 2019; 135 Diouane (10.1016/j.asoc.2022.109166_b5) 2021; 9 Zhou (10.1016/j.asoc.2022.109166_b38) 2020; 547 Motsa (10.1016/j.asoc.2022.109166_b69) 2013; 72 Hassouneh (10.1016/j.asoc.2022.109166_b78) 2021; 9 Ding (10.1016/j.asoc.2022.109166_b67) 2021; 31 Rida (10.1016/j.asoc.2022.109166_b63) 2019; 8 Adl (10.1016/j.asoc.2022.109166_b39) 2020; 523 |
| References_xml | – start-page: 117 year: 1993 end-page: 127 ident: b29 article-title: Training a 3-Node Neural Network Is NP-Complete – reference: Timea Bezdan, Dusan Cvetnic, Luka Gajic, Miodrag Zivkovic, Ivana Strumberger, Nebojsa Bacanin, Feature selection by firefly algorithm with improved initialization strategy, in: Proceedings of the 7th Conference on the Engineering of Computer Based Systems, 2021, F [C]. – volume: 9 start-page: 33522 year: 2021 end-page: 33531 ident: b6 article-title: Improved particle swarm optimization algorithm for AGV path planning publication-title: IEEE Access – volume: 164 year: 2021 ident: b7 article-title: An improved ant colony optimization with an automatic updating mechanism for constraint satisfaction problems publication-title: Expert Syst. Appl. – volume: 37 year: 2018 ident: b73 article-title: An improved binary differential evolution algorithm for feature selection in molecular signatures publication-title: QSAR Comb. Sci. – volume: 106 year: 2021 ident: b28 article-title: Improved binary particle swarm optimization for feature selection with new initialization and search space reduction strategies publication-title: Appl. Soft Comput. – volume: 43 start-page: 20 year: 2016 end-page: 34 ident: b72 article-title: Opposition chaotic fitness mutation based adaptive inertia weight BPSO for feature selection in text clustering publication-title: Appl. Soft Comput. – volume: 154 start-page: 43 year: 2018 end-page: 67 ident: b76 article-title: An efficient binary salp swarm algorithm with crossover scheme for feature selection problems publication-title: Knowl.-Based Syst. – volume: 36 start-page: 334 year: 2015 end-page: 348 ident: b44 article-title: A binary ABC algorithm based on advanced similarity scheme for feature selection publication-title: Appl. Soft Comput. – volume: 126 start-page: 991 year: 2016 end-page: 1002 ident: b21 article-title: A nonlinear support vector machine model with hard penalty function based on glowworm swarm optimization for forecasting daily global solar radiation publication-title: Energy Convers. Manage. – volume: 33 start-page: 5267 year: 2020 end-page: 5286 ident: b37 article-title: CGA: a new feature selection model for visual human action recognition publication-title: Neural Comput. Appl. – volume: 5 start-page: 1205 year: 2004 end-page: 1224 ident: b56 article-title: Efficient feature selection via analysis of relevance and redundancy publication-title: J. Mach. Learn. Res. – volume: 48 start-page: 3462 year: 2018 end-page: 3481 ident: b70 article-title: A novel chaotic salp swarm algorithm for global optimization and feature selection publication-title: Appl. Intell. – volume: 9 start-page: 71244 year: 2021 end-page: 71261 ident: b1 article-title: Crystal structure algorithm (CryStAl): A metaheuristic optimization method publication-title: IEEE Access – start-page: 1 year: 2020 end-page: 22 ident: b36 article-title: A novel binary chaotic genetic algorithm for feature selection and its utility in affective computing and healthcare publication-title: Neural Comput. Appl. – volume: 72 start-page: 265 year: 2013 end-page: 283 ident: b69 article-title: A new multistage spectral relaxation method for solving chaotic initial value systems publication-title: Nonlinear Dynam. – volume: 31 year: 2021 ident: b67 article-title: Investigation on the running-in quality at different rotating speeds by chaos theory publication-title: Int. J. Bifurcation Chaos – volume: 523 start-page: 245 year: 2020 end-page: 265 ident: b39 article-title: Multi-objective feature selection using hybridization of a genetic algorithm and direct multisearch for key quality characteristic selection publication-title: Inform. Sci. – volume: 507 start-page: 67 year: 2020 end-page: 85 ident: b42 article-title: Binary differential evolution with self-learning for multi-objective feature selection publication-title: Inform. Sci. – volume: 10 start-page: 3454 year: 2017 end-page: 3464 ident: b46 article-title: A new air pollution source identification method based on remotely sensed aerosol and improved glowworm swarm optimization publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 105 year: 2021 ident: b17 article-title: Multistart solution-based tabu search for the set-union knapsack problem publication-title: Appl. Soft Comput. – year: 2021 ident: b9 article-title: A binary artificial bee colony algorithm and its performance assessment publication-title: Expert Syst. Appl. – volume: 23 start-page: 2188 year: 2021 end-page: 2198 ident: b64 article-title: Human memory update strategy: a multi-layer template update mechanism for remote visual monitoring publication-title: IEEE Trans. Multimed. – volume: 79 start-page: 4867 year: 2020 end-page: 4890 ident: b59 article-title: A comprehensive overview of feature representation for biometric recognition publication-title: Multimedia Tools Appl. – volume: 8 start-page: 111945 year: 2020 end-page: 111953 ident: b74 article-title: Optimal design of sparse array for ultrasonic total focusing method by binary particle swarm optimization publication-title: IEEE Access – volume: 9 start-page: 1 year: 2013 end-page: 14 ident: b47 article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization publication-title: Swarm Evol. Comput. – reference: G.B. Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: a new learning scheme of feedforward neural networks, in: Proceedings of the IEEE International Joint Conference on Neural Networks, 2005, F[C]. – volume: 74 start-page: 190 year: 2018 end-page: 205 ident: b33 article-title: A decomposition-based multiobjective evolutionary algorithm with angle-based adaptive penalty publication-title: Appl. Soft Comput. – volume: 19 start-page: 1567 year: 2021 end-page: 1578 ident: b19 article-title: Subtypes identification on heart failure with preserved ejection fraction via network enhancement fusion using multi-omics data publication-title: Comput. Struct. Biotechnol. J. – volume: 17 year: 2021 ident: b66 article-title: Evaluation and comparison of multi-omics data integration methods for cancer subtyping publication-title: PLoS Comput. Biol. – start-page: 4 year: 2010 end-page: 13 ident: b55 article-title: Feature selection: An ever evolving frontier in data mining – volume: 9 start-page: 9262 year: 2021 end-page: 9276 ident: b16 article-title: An ameliorated harmony search algorithm with hybrid convergence mechanism publication-title: IEEE Access – volume: 44 start-page: 2405 year: 2017 end-page: 2417 ident: b51 article-title: Semi-supervised and unsupervised extreme learning machines publication-title: IEEE Trans. Cybern. – volume: 16 start-page: 16 year: 2003 ident: b58 article-title: 1-norm support vector machines publication-title: Adv. Neural Inf. Process. Syst. – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b12 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. – volume: 135 start-page: 201 year: 2019 end-page: 211 ident: b18 article-title: A hybrid binary particle swarm optimization with tabu search for the set-union knapsack problem publication-title: Expert Syst. Appl. – volume: 9 start-page: 14867 year: 2021 end-page: 14882 ident: b41 article-title: bSSA: Binary salp swarm algorithm with hybrid data transformation for feature selection publication-title: IEEE Access – volume: 8 start-page: 14 year: 2019 end-page: 28 ident: b63 article-title: Robust gait recognition: a comprehensive survey publication-title: IET Biometrics – volume: 14 start-page: 1691 year: 2020 end-page: 1705 ident: b75 article-title: Opposition based competitive grey wolf optimizer for EMG feature selection publication-title: Evol. Intell. – volume: 448 start-page: 82 year: 2021 end-page: 93 ident: b52 article-title: Feature learning for stacked ELM via low-rank matrix factorization publication-title: Neurocomputing – volume: 8 start-page: 42864 year: 2020 end-page: 42876 ident: b10 article-title: Analysis of network coverage optimization based on feedback K-means clustering and artificial fish swarm algorithm publication-title: IEEE Access – volume: 100 year: 2021 ident: b8 article-title: Dynamic collaborative fireworks algorithm and its applications in robust pole assignment optimization publication-title: Appl. Soft Comput. – volume: 149 year: 2020 ident: b57 article-title: Multiobjective feature selection for key quality characteristic identification in production processes using a nondominated-sorting-based whale optimization algorithm - ScienceDirect publication-title: Comput. Ind. Eng. – volume: 183 year: 2021 ident: b11 article-title: A hierarchical guidance strategy assisted fruit fly optimization algorithm with cooperative learning mechanism publication-title: Expert Syst. Appl. – volume: 41 start-page: 262 year: 2011 end-page: 267 ident: b23 article-title: Particle swarm optimization in wireless-sensor networks: A brief survey publication-title: IEEE Trans. Syst. Man Cybern. C (Appl. Rev.) – volume: 565 start-page: 105 year: 2021 end-page: 127 ident: b40 article-title: TAGA: Tabu asexual genetic algorithm embedded in a filter/filter feature selection approach for high-dimensional data publication-title: Inform. Sci. – volume: 8 start-page: 172275 year: 2020 end-page: 172295 ident: b68 article-title: A color image encryption algorithm based on one time key, chaos theory, and concept of rotor machine publication-title: IEEE Access – volume: 65 year: 2021 ident: b4 article-title: Genetic programming for stacked generalization publication-title: Swarm Evol. Comput. – volume: 43 start-page: 1698 year: 2013 end-page: 1709 ident: b25 article-title: Particle swarm optimization for discrete-time inverse optimal control of a doubly fed induction generator publication-title: IEEE Trans. Cybern. – volume: 107 year: 2021 ident: b60 article-title: Whether normalized or not? Towards more robust iris recognition using dynamic programming publication-title: Image Vis. Comput. – volume: 8 start-page: 94 year: 2021 end-page: 109 ident: b14 article-title: A multi-layered gravitational search algorithm for function optimization and real-world problems publication-title: IEEE/CAA J. Autom. Sin. – volume: 62 year: 2021 ident: b32 article-title: Multi-objective particle swarm optimization with adaptive strategies for feature selection publication-title: Swarm Evol. Comput. – volume: 566 start-page: 215 year: 2021 end-page: 238 ident: b3 article-title: Biased parameter adaptation in differential evolution publication-title: Inform. Sci. – volume: 9 start-page: 94505 year: 2021 end-page: 94522 ident: b13 article-title: An improved evolution strategy hybridization with simulated annealing for permutation flow shop scheduling problems publication-title: IEEE Access – year: 2021 ident: b2 article-title: Automation of software test data generation using genetic algorithm and reinforcement learning publication-title: Expert Syst. Appl. – volume: 14 start-page: 332 year: 2021 end-page: 345 ident: b43 article-title: Adaptive technique for feature selection in modified graph clustering-based ant colony optimization publication-title: Int. J. Intell. Eng. Syst. – volume: 219 year: 2021 ident: b31 article-title: A novel multi population based particle swarm optimization for feature selection publication-title: Knowl.-Based Syst. – year: 2021 ident: b15 article-title: Load frequency control of a microgrid employing a 2D Sine logistic map based chaotic sine cosine algorithm publication-title: Appl. Soft Comput. – volume: 78 start-page: 5665 year: 2019 end-page: 5679 ident: b61 article-title: Palmprint identification using sparse and dense hybrid representation publication-title: Multimedia Tools Appl. – year: 2022 ident: b65 article-title: Research and application of deep learning in image recognition publication-title: Proceedings of the 2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications – volume: 20 start-page: 606 year: 2016 end-page: 626 ident: b22 article-title: A survey on evolutionary computation approaches to feature selection publication-title: IEEE Trans. Evol. Comput. – volume: 8 start-page: 183391 year: 2020 end-page: 183400 ident: b62 article-title: A score-level fusion of fingerprint matching with fingerprint liveness detection publication-title: IEEE Access – volume: 547 start-page: 841 year: 2020 end-page: 859 ident: b38 article-title: A problem-specific non-dominated sorting genetic algorithm for supervised feature selection publication-title: Inform. Sci. – volume: 47 start-page: 4356 year: 2016 end-page: 4366 ident: b54 article-title: Feature selection through message passing publication-title: IEEE Trans. Cybern. – volume: 9 start-page: 14239 year: 2021 end-page: 14258 ident: b78 article-title: Boosted whale optimization algorithm with natural selection operators for software fault prediction publication-title: IEEE Access – volume: 274 start-page: 978 year: 2019 end-page: 989 ident: b27 article-title: Key quality characteristics selection for imbalanced production data using a two-phase bi-objective feature selection method publication-title: European J. Oper. Res. – start-page: 1 year: 2019 end-page: 15 ident: b35 article-title: A new binary particle swarm optimization approach: Momentum and dynamic balance between exploration and exploitation publication-title: IEEE Trans. Cybern. – volume: 8 start-page: 1130 year: 2019 ident: b77 article-title: A new quadratic binary Harris Hawk optimization for feature selection publication-title: Electronics – reference: A.J. Annema, K. Hoen, H. Wallinga, Precision requirements for single-layer feedforward neural networks, in: Proceedings of the International Conference on Microelectronics for Neural Networks & Fuzzy Systems, 2002, F[C]. – volume: 77 start-page: 2844 year: 2020 end-page: 2874 ident: b79 article-title: A new and fast rival genetic algorithm for feature selection publication-title: J. Supercomput. – volume: 26 start-page: 69 year: 2012 end-page: 74 ident: b24 article-title: A new fruit fly optimization algorithm: Taking the financial distress model as an example publication-title: Knowl.-Based Syst. – volume: 54 start-page: 917 year: 2020 end-page: 1004 ident: b71 article-title: Chaos game optimization: a novel metaheuristic algorithm publication-title: Artif. Intell. Rev. – volume: 51 start-page: 3954 year: 2019 end-page: 3967 ident: b48 article-title: Chaotic local search-based differential evolution algorithms for optimization publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 33 start-page: 25 year: 2000 end-page: 41 ident: b20 article-title: Comparison of algorithms that select features for pattern classifiers publication-title: Pattern Recognit. – volume: 547 start-page: 870 year: 2021 end-page: 886 ident: b81 article-title: A differential evolution based feature combination selection algorithm for high-dimensional data publication-title: Inform. Sci. – volume: 12 start-page: 171 year: 2008 end-page: 195 ident: b26 article-title: Particle swarm optimization: Basic concepts, variants and applications in power systems publication-title: IEEE Trans. Evol. Comput. – volume: 9 year: 2021 ident: b5 article-title: A merit function approach for evolution strategies publication-title: EURO J. Comput. Optim. – volume: 36 start-page: 2633 year: 2009 end-page: 2644 ident: b53 article-title: Effects of feature construction on classification performance: An empirical study in bank failure prediction publication-title: Expert Syst. Appl. – start-page: 1 year: 2021 end-page: 15 ident: b34 article-title: A novel gaussian based particle swarm optimization gravitational search algorithm for feature selection and classification publication-title: Neural Comput. Appl. – volume: 2017 year: 2017 ident: b45 article-title: New dandelion algorithm optimizes extreme learning machine for biomedical classification problems publication-title: Comput. Intell. Neurosci. – start-page: 273 year: 1997 end-page: 324 ident: b30 article-title: Wrapper for Feature Subset Selection – volume: 23 start-page: 2188 year: 2021 ident: 10.1016/j.asoc.2022.109166_b64 article-title: Human memory update strategy: a multi-layer template update mechanism for remote visual monitoring publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2021.3065580 – volume: 183 issue: 6 year: 2021 ident: 10.1016/j.asoc.2022.109166_b11 article-title: A hierarchical guidance strategy assisted fruit fly optimization algorithm with cooperative learning mechanism publication-title: Expert Syst. Appl. – volume: 547 start-page: 841 year: 2020 ident: 10.1016/j.asoc.2022.109166_b38 article-title: A problem-specific non-dominated sorting genetic algorithm for supervised feature selection publication-title: Inform. Sci. doi: 10.1016/j.ins.2020.08.083 – volume: 33 start-page: 5267 issue: 10 year: 2020 ident: 10.1016/j.asoc.2022.109166_b37 article-title: CGA: a new feature selection model for visual human action recognition publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05297-5 – volume: 74 start-page: 190 year: 2018 ident: 10.1016/j.asoc.2022.109166_b33 article-title: A decomposition-based multiobjective evolutionary algorithm with angle-based adaptive penalty publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.10.028 – volume: 164 year: 2021 ident: 10.1016/j.asoc.2022.109166_b7 article-title: An improved ant colony optimization with an automatic updating mechanism for constraint satisfaction problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114021 – volume: 5 start-page: 1205 year: 2004 ident: 10.1016/j.asoc.2022.109166_b56 article-title: Efficient feature selection via analysis of relevance and redundancy publication-title: J. Mach. Learn. Res. – volume: 8 start-page: 172275 year: 2020 ident: 10.1016/j.asoc.2022.109166_b68 article-title: A color image encryption algorithm based on one time key, chaos theory, and concept of rotor machine publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3024994 – volume: 9 start-page: 71244 year: 2021 ident: 10.1016/j.asoc.2022.109166_b1 article-title: Crystal structure algorithm (CryStAl): A metaheuristic optimization method publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3079161 – ident: 10.1016/j.asoc.2022.109166_b49 – ident: 10.1016/j.asoc.2022.109166_b50 – volume: 47 start-page: 4356 issue: 12 year: 2016 ident: 10.1016/j.asoc.2022.109166_b54 article-title: Feature selection through message passing publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2609408 – start-page: 4 year: 2010 ident: 10.1016/j.asoc.2022.109166_b55 – volume: 9 start-page: 1 issue: Complete year: 2013 ident: 10.1016/j.asoc.2022.109166_b47 article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2012.09.002 – volume: 54 start-page: 917 issue: 2 year: 2020 ident: 10.1016/j.asoc.2022.109166_b71 article-title: Chaos game optimization: a novel metaheuristic algorithm publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09867-w – volume: 9 start-page: 9262 year: 2021 ident: 10.1016/j.asoc.2022.109166_b16 article-title: An ameliorated harmony search algorithm with hybrid convergence mechanism publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3049922 – volume: 8 start-page: 42864 year: 2020 ident: 10.1016/j.asoc.2022.109166_b10 article-title: Analysis of network coverage optimization based on feedback K-means clustering and artificial fish swarm algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2970208 – volume: 36 start-page: 2633 issue: 2 year: 2009 ident: 10.1016/j.asoc.2022.109166_b53 article-title: Effects of feature construction on classification performance: An empirical study in bank failure prediction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.01.053 – volume: 51 start-page: 3954 issue: 6 year: 2019 ident: 10.1016/j.asoc.2022.109166_b48 article-title: Chaotic local search-based differential evolution algorithms for optimization publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2019.2956121 – start-page: 1 year: 2021 ident: 10.1016/j.asoc.2022.109166_b34 article-title: A novel gaussian based particle swarm optimization gravitational search algorithm for feature selection and classification publication-title: Neural Comput. Appl. – volume: 12 start-page: 171 issue: 2 year: 2008 ident: 10.1016/j.asoc.2022.109166_b26 article-title: Particle swarm optimization: Basic concepts, variants and applications in power systems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.896686 – volume: 106 year: 2021 ident: 10.1016/j.asoc.2022.109166_b28 article-title: Improved binary particle swarm optimization for feature selection with new initialization and search space reduction strategies publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107302 – volume: 565 start-page: 105 year: 2021 ident: 10.1016/j.asoc.2022.109166_b40 article-title: TAGA: Tabu asexual genetic algorithm embedded in a filter/filter feature selection approach for high-dimensional data publication-title: Inform. Sci. doi: 10.1016/j.ins.2021.01.020 – volume: 78 start-page: 5665 issue: 5 year: 2019 ident: 10.1016/j.asoc.2022.109166_b61 article-title: Palmprint identification using sparse and dense hybrid representation publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-018-5655-8 – issue: 5 year: 2021 ident: 10.1016/j.asoc.2022.109166_b2 article-title: Automation of software test data generation using genetic algorithm and reinforcement learning publication-title: Expert Syst. Appl. – volume: 43 start-page: 20 year: 2016 ident: 10.1016/j.asoc.2022.109166_b72 article-title: Opposition chaotic fitness mutation based adaptive inertia weight BPSO for feature selection in text clustering publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.01.019 – volume: 62 issue: 6 year: 2021 ident: 10.1016/j.asoc.2022.109166_b32 article-title: Multi-objective particle swarm optimization with adaptive strategies for feature selection publication-title: Swarm Evol. Comput. – volume: 507 start-page: 67 year: 2020 ident: 10.1016/j.asoc.2022.109166_b42 article-title: Binary differential evolution with self-learning for multi-objective feature selection publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.08.040 – volume: 36 start-page: 334 year: 2015 ident: 10.1016/j.asoc.2022.109166_b44 article-title: A binary ABC algorithm based on advanced similarity scheme for feature selection publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.07.023 – start-page: 1 issue: 99 year: 2019 ident: 10.1016/j.asoc.2022.109166_b35 article-title: A new binary particle swarm optimization approach: Momentum and dynamic balance between exploration and exploitation publication-title: IEEE Trans. Cybern. – volume: 10 start-page: 3454 issue: 8 year: 2017 ident: 10.1016/j.asoc.2022.109166_b46 article-title: A new air pollution source identification method based on remotely sensed aerosol and improved glowworm swarm optimization publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2017.2690943 – volume: 8 start-page: 94 issue: 1 year: 2021 ident: 10.1016/j.asoc.2022.109166_b14 article-title: A multi-layered gravitational search algorithm for function optimization and real-world problems publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2020.1003462 – volume: 65 issue: 6 year: 2021 ident: 10.1016/j.asoc.2022.109166_b4 article-title: Genetic programming for stacked generalization publication-title: Swarm Evol. Comput. – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.asoc.2022.109166_b12 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 33 start-page: 25 issue: 1 year: 2000 ident: 10.1016/j.asoc.2022.109166_b20 article-title: Comparison of algorithms that select features for pattern classifiers publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(99)00041-2 – volume: 523 start-page: 245 year: 2020 ident: 10.1016/j.asoc.2022.109166_b39 article-title: Multi-objective feature selection using hybridization of a genetic algorithm and direct multisearch for key quality characteristic selection publication-title: Inform. Sci. doi: 10.1016/j.ins.2020.03.032 – volume: 20 start-page: 606 issue: 4 year: 2016 ident: 10.1016/j.asoc.2022.109166_b22 article-title: A survey on evolutionary computation approaches to feature selection publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2015.2504420 – volume: 547 start-page: 870 year: 2021 ident: 10.1016/j.asoc.2022.109166_b81 article-title: A differential evolution based feature combination selection algorithm for high-dimensional data publication-title: Inform. Sci. doi: 10.1016/j.ins.2020.08.081 – volume: 44 start-page: 2405 issue: 12 year: 2017 ident: 10.1016/j.asoc.2022.109166_b51 article-title: Semi-supervised and unsupervised extreme learning machines publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2307349 – volume: 48 start-page: 3462 issue: 10 year: 2018 ident: 10.1016/j.asoc.2022.109166_b70 article-title: A novel chaotic salp swarm algorithm for global optimization and feature selection publication-title: Appl. Intell. doi: 10.1007/s10489-018-1158-6 – volume: 8 start-page: 14 issue: 1 year: 2019 ident: 10.1016/j.asoc.2022.109166_b63 article-title: Robust gait recognition: a comprehensive survey publication-title: IET Biometrics doi: 10.1049/iet-bmt.2018.5063 – volume: 107 year: 2021 ident: 10.1016/j.asoc.2022.109166_b60 article-title: Whether normalized or not? Towards more robust iris recognition using dynamic programming publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2021.104112 – year: 2022 ident: 10.1016/j.asoc.2022.109166_b65 article-title: Research and application of deep learning in image recognition – volume: 8 start-page: 111945 year: 2020 ident: 10.1016/j.asoc.2022.109166_b74 article-title: Optimal design of sparse array for ultrasonic total focusing method by binary particle swarm optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3001947 – volume: 135 start-page: 201 year: 2019 ident: 10.1016/j.asoc.2022.109166_b18 article-title: A hybrid binary particle swarm optimization with tabu search for the set-union knapsack problem publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.06.007 – ident: 10.1016/j.asoc.2022.109166_b80 doi: 10.1145/3459960.3459974 – issue: 3 year: 2021 ident: 10.1016/j.asoc.2022.109166_b9 article-title: A binary artificial bee colony algorithm and its performance assessment publication-title: Expert Syst. Appl. – volume: 274 start-page: 978 issue: 3 year: 2019 ident: 10.1016/j.asoc.2022.109166_b27 article-title: Key quality characteristics selection for imbalanced production data using a two-phase bi-objective feature selection method publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2018.10.051 – volume: 100 issue: 6 year: 2021 ident: 10.1016/j.asoc.2022.109166_b8 article-title: Dynamic collaborative fireworks algorithm and its applications in robust pole assignment optimization publication-title: Appl. Soft Comput. – volume: 448 start-page: 82 year: 2021 ident: 10.1016/j.asoc.2022.109166_b52 article-title: Feature learning for stacked ELM via low-rank matrix factorization publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.110 – volume: 105 issue: 6 year: 2021 ident: 10.1016/j.asoc.2022.109166_b17 article-title: Multistart solution-based tabu search for the set-union knapsack problem publication-title: Appl. Soft Comput. – volume: 8 start-page: 1130 issue: 10 year: 2019 ident: 10.1016/j.asoc.2022.109166_b77 article-title: A new quadratic binary Harris Hawk optimization for feature selection publication-title: Electronics doi: 10.3390/electronics8101130 – volume: 14 start-page: 1691 issue: 4 year: 2020 ident: 10.1016/j.asoc.2022.109166_b75 article-title: Opposition based competitive grey wolf optimizer for EMG feature selection publication-title: Evol. Intell. doi: 10.1007/s12065-020-00441-5 – volume: 566 start-page: 215 year: 2021 ident: 10.1016/j.asoc.2022.109166_b3 article-title: Biased parameter adaptation in differential evolution publication-title: Inform. Sci. doi: 10.1016/j.ins.2021.03.016 – volume: 9 year: 2021 ident: 10.1016/j.asoc.2022.109166_b5 article-title: A merit function approach for evolution strategies publication-title: EURO J. Comput. Optim. doi: 10.1016/j.ejco.2020.100001 – volume: 2017 year: 2017 ident: 10.1016/j.asoc.2022.109166_b45 article-title: New dandelion algorithm optimizes extreme learning machine for biomedical classification problems publication-title: Comput. Intell. Neurosci. doi: 10.1155/2017/4523754 – volume: 72 start-page: 265 issue: 1–2 year: 2013 ident: 10.1016/j.asoc.2022.109166_b69 article-title: A new multistage spectral relaxation method for solving chaotic initial value systems publication-title: Nonlinear Dynam. doi: 10.1007/s11071-012-0712-8 – volume: 9 start-page: 14867 year: 2021 ident: 10.1016/j.asoc.2022.109166_b41 article-title: bSSA: Binary salp swarm algorithm with hybrid data transformation for feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3049547 – volume: 19 start-page: 1567 year: 2021 ident: 10.1016/j.asoc.2022.109166_b19 article-title: Subtypes identification on heart failure with preserved ejection fraction via network enhancement fusion using multi-omics data publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2021.03.010 – volume: 37 issue: 4 year: 2018 ident: 10.1016/j.asoc.2022.109166_b73 article-title: An improved binary differential evolution algorithm for feature selection in molecular signatures publication-title: QSAR Comb. Sci. – volume: 31 issue: 7 year: 2021 ident: 10.1016/j.asoc.2022.109166_b67 article-title: Investigation on the running-in quality at different rotating speeds by chaos theory publication-title: Int. J. Bifurcation Chaos doi: 10.1142/S021812742150108X – volume: 17 issue: 8 year: 2021 ident: 10.1016/j.asoc.2022.109166_b66 article-title: Evaluation and comparison of multi-omics data integration methods for cancer subtyping publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1009224 – start-page: 273 year: 1997 ident: 10.1016/j.asoc.2022.109166_b30 – volume: 9 start-page: 94505 year: 2021 ident: 10.1016/j.asoc.2022.109166_b13 article-title: An improved evolution strategy hybridization with simulated annealing for permutation flow shop scheduling problems publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3093336 – volume: 77 start-page: 2844 issue: 3 year: 2020 ident: 10.1016/j.asoc.2022.109166_b79 article-title: A new and fast rival genetic algorithm for feature selection publication-title: J. Supercomput. doi: 10.1007/s11227-020-03378-9 – volume: 43 start-page: 1698 issue: 6 year: 2013 ident: 10.1016/j.asoc.2022.109166_b25 article-title: Particle swarm optimization for discrete-time inverse optimal control of a doubly fed induction generator publication-title: IEEE Trans. Cybern. doi: 10.1109/TSMCB.2012.2228188 – issue: 4 year: 2021 ident: 10.1016/j.asoc.2022.109166_b15 article-title: Load frequency control of a microgrid employing a 2D Sine logistic map based chaotic sine cosine algorithm publication-title: Appl. Soft Comput. – volume: 16 start-page: 16 issue: 1 year: 2003 ident: 10.1016/j.asoc.2022.109166_b58 article-title: 1-norm support vector machines publication-title: Adv. Neural Inf. Process. Syst. – volume: 149 year: 2020 ident: 10.1016/j.asoc.2022.109166_b57 article-title: Multiobjective feature selection for key quality characteristic identification in production processes using a nondominated-sorting-based whale optimization algorithm - ScienceDirect publication-title: Comput. Ind. Eng. – volume: 9 start-page: 33522 year: 2021 ident: 10.1016/j.asoc.2022.109166_b6 article-title: Improved particle swarm optimization algorithm for AGV path planning publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3061288 – volume: 126 start-page: 991 year: 2016 ident: 10.1016/j.asoc.2022.109166_b21 article-title: A nonlinear support vector machine model with hard penalty function based on glowworm swarm optimization for forecasting daily global solar radiation publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2016.08.069 – start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.asoc.2022.109166_b36 article-title: A novel binary chaotic genetic algorithm for feature selection and its utility in affective computing and healthcare publication-title: Neural Comput. Appl. – volume: 14 start-page: 332 issue: 3 year: 2021 ident: 10.1016/j.asoc.2022.109166_b43 article-title: Adaptive technique for feature selection in modified graph clustering-based ant colony optimization publication-title: Int. J. Intell. Eng. Syst. – volume: 154 start-page: 43 year: 2018 ident: 10.1016/j.asoc.2022.109166_b76 article-title: An efficient binary salp swarm algorithm with crossover scheme for feature selection problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.05.009 – volume: 26 start-page: 69 issue: 2 year: 2012 ident: 10.1016/j.asoc.2022.109166_b24 article-title: A new fruit fly optimization algorithm: Taking the financial distress model as an example publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2011.07.001 – volume: 219 issue: 4 year: 2021 ident: 10.1016/j.asoc.2022.109166_b31 article-title: A novel multi population based particle swarm optimization for feature selection publication-title: Knowl.-Based Syst. – volume: 41 start-page: 262 issue: 2 year: 2011 ident: 10.1016/j.asoc.2022.109166_b23 article-title: Particle swarm optimization in wireless-sensor networks: A brief survey publication-title: IEEE Trans. Syst. Man Cybern. C (Appl. Rev.) doi: 10.1109/TSMCC.2010.2054080 – volume: 79 start-page: 4867 issue: 7 year: 2020 ident: 10.1016/j.asoc.2022.109166_b59 article-title: A comprehensive overview of feature representation for biometric recognition publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-018-6808-5 – volume: 8 start-page: 183391 year: 2020 ident: 10.1016/j.asoc.2022.109166_b62 article-title: A score-level fusion of fingerprint matching with fingerprint liveness detection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3027846 – volume: 9 start-page: 14239 year: 2021 ident: 10.1016/j.asoc.2022.109166_b78 article-title: Boosted whale optimization algorithm with natural selection operators for software fault prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3052149 – start-page: 117 year: 1993 ident: 10.1016/j.asoc.2022.109166_b29 |
| SSID | ssj0016928 |
| Score | 2.4735563 |
| Snippet | Feature selection (FS) is an important pre-processing step in data mining and pattern recognition. It can effectively compress the dimensionality of the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 109166 |
| SubjectTerms | Chaos algorithm Dandelion algorithm Feature selection Metaheuristic algorithm Seeding strategy |
| Title | A binary dandelion algorithm using seeding and chaos population strategies for feature selection |
| URI | https://dx.doi.org/10.1016/j.asoc.2022.109166 |
| Volume | 125 |
| WOSCitedRecordID | wos000861626300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQcuvBEtD_nALcoq7zjHFRQVhCoORVpOwXFsmmpJVpuk7M_v-JmlQEUPXKIo60yizKfxePbzNwi9CWtRiTClfgA_-wmJqF9Fsm7FBRGZSOOcKcn8T_npKVmtis-z2cbuhblc521Ldrti819dDdfA2XLr7C3c7YzCBTgHp8MR3A7Hf3L80qv0Htta1ofXim68_t5tm-H8hzeq0kCvpyy9p-2cdr23cX28vH6w6hGKgii4kv70etUwx3rR6taaHLaHYK7Y6eNgp0JdjFaF2K_jrnEYfGc5wGP7kzeOD6RIBauGdlU3MQ50SDwZm_3aBCxrLTPOhdMM3F6YIqONt1G6FzGlMKnuu_JbMNd1hYsFBZwupPnFNPhX5exrM5rjGVoK20UpbZTSRqlt3EEHUZ4WZI4Olh-OVx_dP09Zofrxujc3G600J_D6m_w5mdlLUM4eovtmZYGXGhGP0Iy3j9ED27UDmyD-BH1bYg0Q7ACCHUCwAgg2AMEwACuA4AkgeAIIBoBgAxDsAPIUfXl_fPb2xDd9NnwGC9DBhyRXBKIiNKmoKGIaS81IJgJOKY0jJqQmX5YHIWN1UvGKMJgThJBKeCGtE1rHz9C87Vr-HGFSRRklDAxRkSQ8L2gWhTFJ66Aqsjrlhyi0H6xkRoRe9kJZl3931SHy3D0bLcFy4-jU-qE0SaRODkuA1Q33Hd3qKS_QvQnvL9F82I78FbrLLoem3742mLoCHuKWpA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+binary+dandelion+algorithm+using+seeding+and+chaos+population+strategies+for+feature+selection&rft.jtitle=Applied+soft+computing&rft.au=Zhao%2C+Yuxin&rft.au=Dong%2C+Junwei&rft.au=Li%2C+Xiaobo&rft.au=Chen%2C+Hui&rft.date=2022-08-01&rft.issn=1568-4946&rft.volume=125&rft.spage=109166&rft_id=info:doi/10.1016%2Fj.asoc.2022.109166&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2022_109166 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |